104學習精靈

CNN

CNN
關注
邀請朋友
邀請朋友

Line

Facebook

複製連結

取消
關於教室
關注人數 13 人
104人力銀行從職缺中挑選出常見技能所成立的官方教室,提供大家進行共學互動。
學習主持人
持續分享知識,
有機會成為官方教室主持人
教室標籤
關於教室
關注人數 13 人
104人力銀行從職缺中挑選出常見技能所成立的官方教室,提供大家進行共學互動。
學習主持人
持續分享知識,
有機會成為官方教室主持人
教室標籤
Hi~ 歡迎分享學習資源,有學習問題可匿名向Giver發問!
我要分享
我要提問

CNN 學習推薦

全部
影片
文章
緯育TibaMe

2023/09/20

錯過會後悔!AIGO補助通過,學AI影像辨識只需半價!
🎉萬眾矚目!TibaMe 再次通過AIGO補助計畫
資格符合者,政府幫你負擔💰半價學費💰
立即卡位👉https://bit.ly/48oIKM6
AI產品瑕疵檢測-應用CNN物件偵測實作班
🎯業界專業視角定義瑕疵影像分類,確認每個瑕疵影像邊緣
🎯以物件偵測找出瑕疵並標註範圍與各瑕疵類別比對
🎯AI 建模學習瑕疵類別與範圍
🎯以實際影像進行檢驗,比對模型辨識準確度與辨識位置
🎯紮實AI影像辨識建模的基本功
🎯了解各類經典AI模型、實作AI建模分析
💡提供最全面的學習服務
✅自由選擇現場或遠距離上課
✅課程全程錄影,課後無壓力複習
✅學不會?1年內免費複訓1次
✅贈送價值$3,600的 AI 線上課程
0 0 549 0

熱門精選

104學習精靈

產品

09/10 11:01

🌟找尋讓你發光的職涯天賦|AI 個人化報告 x 專業測驗解析
你是否曾經在工作中感到迷茫,不確定自己真正適合什麼樣的職業?還是你已經在職場多年,卻覺得找不到發揮天賦的機會?
現在,機會來了!
透過AI專業測驗與職涯規劃課程,幫助你重新認識自己,挖掘最適合你的職場定位。不論你是正在求職、職涯轉型,還是想要突破職場瓶頸,這堂課都能給你全新的啟發和方向!
👩‍🏫 課程亮點:
✅ AI個人化報告,精準解析你的職涯優勢
✅ 專業測驗幫助你找到真正適合的工作方向
✅ 超強實作課程,引導自我評估與回顧心流,找出專屬的天賦才能
🎁 特別加碼:
參加課程還可獲得專屬100點 LINE POINTS獎勵!
3 2 13210 1
104學習精靈精選課程
看更多課程
想提升職場競爭力?專業技能課程看起來👇
電腦視覺演算法
機器如何看見世界?看到車子開過來,我們會閃避;遇到認識的人,我們能夠識別。這些動作對人類來說很簡單,但機器做得到嗎? 隨著電腦運算效率的提升,帶動了深度學習的發展,讓影像領域有了重大的突破。 如今,透過各種影像技術的整合,我們已經能夠讓機器感知世界。 本課程從經典的演算法,如HAAR人臉偵側、Hog 特徵擷取、Adaboost 分類器等演算法,了解如何進行人臉偵測與人臉辨識。同時也以深度學習CNN演算法,來說明如何實現人臉偵測與辨識。 本課程帶你深入了解這些演算法背後的原理,並且對於演算法都以手刻的方式(From Scratch)進行實作。此外,也以Python Tkinter 完成一個人臉門禁系統的小專案。電腦視覺常會依照現場情況有不同的影像處理,因此唯有懂了原理才有可能針對專案的需要,知道如何進行優化與改善,而不侷限於套件工具本身。 學習目標 了解HAAR演算法並知道如何以python實作 (From Scratch) 了解 Adaboost 演算法並知道如何以python實作 (From Scratch) 學會如何利用HARR+Adaboost進行人臉偵測 了解HOG 演算法並知道如何以 python實作 (From Scratch) 學會如何利用HOG + 支持向量機(Support Vector Machine, SVM) 進行人臉或物件識別 學會如何CNN原理及遷移學習的方法,建立人臉識別系統 教學方式 投影片講授及配合程式進行演練 學會如何利用HARR+Adaboost進行人臉偵測 使用Anaconda + Spyder 課程菜單 遠距課程時數:14小時/數位課程時數:14小時 數位觀看天數:30天 精編教材:-精編講義、範例程式碼 -詳細Code 解說且程式範例檔案分類整理 -線上助教系統 課程大綱 電腦視覺-基於HOG與圖像識別 HOG演算法說明與python實作 (From Scratch) 圖檔爬蟲程式撰寫 建立圖檔HOG特徵 Scikit-Learn實現SVM與LogistcRegression 專案: HOG Features+ Classifier :人臉/物品偵測與識別▼ HOG Features+ Classifier :人臉/物品偵測與識別-1 HOG Features+ Classifier :人臉/物品偵測與識別-2 電腦視覺-基於HAAR 人臉偵測 HAAR演算法說明與python實作 (From Scratch) Adaboost Classifier 專案: HAAR Features人臉偵測 CNN深度學習 遷移學習(transfer learning)和微調(fine-tune)原理說明 使用MobileNet建立圖像特徵 (Image Embedding) 建立DNN Classifier MQTT協定- 警示通知 專案: 人臉門禁系統(使用Tkinter界面): 加入/刪除/登入人臉帳號▼
艾鍗學院
AI電腦視覺與影像處理實務
隨著美中貿易戰持續升溫與疫情肆虐,全球的工業布局重新洗牌,醫療科技瞬間抬頭的趨勢下,電腦視覺在工業與醫學資訊的應用更是勢不可擋。而影像視覺是AI的三大應用重點之一,OpenCV是電腦視覺開源應用的始祖,其兼容Python語言更使其與AI的整合更加容易。 在工業檢測AOI領域中,OpenCV是業界算法軟體自製的唯一選擇。在醫學領域,可透過Python套件實現許多醫學影像的讀取與寫入,搭配OpenCV的使用更可實現相關的影像分割等算法。 本課程由資深業師濃縮多年影像實戰經驗,提取最佳學習路徑,透過Python與OpenCV,帶領學員縱橫物件偵測、車牌辨識、工業AOI、醫學影像、視頻監控等應用,引導學員們一揭電腦視覺與開源社群的浩瀚海洋,使具備紮實的戰力投入於理想的視覺應用領域中。 適合對象 欲從事影像處理、電腦視覺、影像分析、影像辨識等演算法開發與實作驗證的工程師、研究者、創客。 想了解影像處理的演算法於嵌入式系統之移植與效能調整。 理解數位電腦視覺原理並能實作,包含:影像特徵提取、特徵強化、輪廓萃取、卷積運算、型態學運算。 從事深度學習在影像處理(如CNN)的研發,而對於影像處理關於物件識別、偵測的底層知識有興趣。 從事FPGA 影位影像訊號的處理,但想要理解底層影像處理相關的演算法。 課程大綱 第一階段 影像處理實務 影像處理實務 -數位影像的生成與結構 OpenCV 基礎認識 -OpenCV可以做什麼 -函式庫的組成及內容 環境配置 -Python簡介 -IDE(VS Code) + CV Library 影像格式與資料結構 影像處理四部曲 -影像讀取 -影像顯示 -色彩空間轉換 -影像儲存 視頻: VideoCapture 影像基本資訊 -值 : Pixel value -圖像ROI (Region of interests) -拆解和合併通道 (RGB)圖像基本運算 -圖像混和 影像正規化與二值化 型態學運算 卷積運算 (Convolution) 影像去雜訊、模糊與強化 影像的幾何轉換 UI Bar 繪圖 影像處理與特徵擷取 -影像特徵擷取 -特徵擷取算法--Fast, Harris, GFTT, SIFT, SURF, STAR, BRISK, ORB, Histogram -HOG演算法 輪廓搜尋與提取 -影Edge -直線偵測 -圓形偵測 -角點偵測 -影像物件計數與分析 第二階段 主題實作 自動車牌辨識(ALPR) -基礎知識 - YOLO -使用PaddleOCR建置自動車牌辨識 -使用YOLOv4建置自動車牌辨識 -PaddleOCR方法比較: pp-ocr, pp-ocr(server), SRN AOI測量 -AOI自動光學檢測機(產業趨勢分享與解析) -從事影像演算法研發人員在產業中的定位 -Template Matching -取得邊緣點 -擬合直線 -測量線到線的距離 0001 OP 0002 OP 醫學影像 -醫學影像基本知識 -分水嶺算法 -影像的處理 -實作CXR肺分割 -移除脊椎 -角點偵測 -計算肺部區域 透過OpenCV實作CXR肺分割 視訊處理與視訊穩定 -影片資料處理概念 -攝影機取像 、運算 、儲存 -視訊檔案讀取與視訊屬性 -透過VidStab模組實作視頻穩定 -使用VidStab類 -幀到幀的座標轉換 -使用Borders與Frame Layering -套用視頻穩定算法 -應用於線上視頻 0004 OP ※以上應用主題,每梯次選用可能不同 ※實際授課大綱請以提供之最新開課簡章內容為準 *本課程需準備WebCam
艾鍗學院
學習精靈

03/12 00:00

338 16
緯育TibaMe

2022/12/07

企業如果想導入AI瑕疵檢測技術該怎麼做?三大產業成功案例分享
▍專家認為,製造業是 AI 在台灣最具發展潛力的產業領域
製造業的產品檢測,搭配高解析度的攝影機與光學元件配置進行機器視覺系統的建置,結合自動化流程設定,即得自動光學檢測辨識 ( Automatic Optical Inspection , AOI ),可輕鬆檢測小到人眼無法看到的物件細節、兼具高效辨識穩定性。
• 搭配AI建模的瑕疵檢測,有效提升辨識精準度、生產力、效率。
• 檢測漏檢率僅0.1%,超過人眼辨識10倍以上。因此在生產線上,機器視覺系統每分鐘能快速且精確的檢測數百個,甚至數千個物件,遠勝於人工的檢測能力。
• 應用產業:PCB、半導體產業、手機零件、醫療器材、各製造業(ex: 相機光學鏡片、高爾夫球、紡織業..等)高單價商品,AI建模提升辨識良率精準度外,提升產線的良率也非常重要。
• AOI不僅是篩檢瑕疵品的剔除者,也蒐集不良品資料,由瑕疵檢測細項數據分析、歸納找出每階段製程不良的原因,減低不良品生成,提升產線良率。
▍產業檢測必備,AI 優化 AOI 影像辨識率
AI深度學習技術利用神經網路,將需辨識的圖像類型加上標示,進而從這些圖像中辨識物件已知的功能特徵,異常和類別進行系統模型的訓練。
在訓練期間,訓練系統 AI模型辨識明確的缺陷瑕疵、存在多種形式的缺陷、和學習物件的正常外觀,包括顯著但可容許的變化。將 AI 助攻 AOI用於產品外觀檢測,涵蓋人工檢測的靈活度、機器檢測所具備的高可靠性,錯誤率更低,辨識速度更快的特性。
AOI自動光學檢測辨識系統,以非接觸式運用機器視覺擷取影像進行分析,應用層面遍及高科技產業研發、製造品管、電子機械業、醫療業等多種產業。
因AOI為非接觸式擷取影像進行分析,為業界廣泛應用於半成品或製程不影響產能的影像抽檢,特別是部分產業,例如印刷電路板(PCB)在極高良率要求,以AI智慧化檢測系統來減低AOI過篩誤判的現象,更能優化後續篩檢,提增影像辨識精確度。
▍如果想學習AI瑕疵檢測並導入企業該怎麼做
AOI 搭配 AI深度學習技術,已成功部署於產業進行實務運用,讓深度學習更普及於市場上各產業優化的必備技術。
TibaMe的「AI產品瑕疵檢測-應用CNN物件偵測實作班」,能讓學員瞭解常見產品瑕疵影像任務種類與深度學習如何應用在產品瑕疵影像辨識的整體概念,使學員在應用與研發相關系統時,能充分瞭解須注意的重點。
授課講師具有台大資工所背景,曾參與多項知名公司AI專案開發經驗,並於科技軟體公司擔任工程師,具備豐富的AI專案實務開發與軟體整合經驗。
這堂課,你將學會:
一、業界專業視角定義瑕疵影像分類,確認每個瑕疵影像邊緣
二、以物件偵測找出瑕疵並標註範圍與各瑕疵類別比對
三、AI建模學習瑕疵類別與範圍
四、以實際影像進行檢驗,比對模型辨識準確度(Accuracy)與辨識位置
五、AI影像辨識建模的基本功
六、了解各類經典AI模型
七、實作AI建模分析
產學接軌,榮獲2022年AIGO金質培訓課程
🏭 培訓成果亮點企業(一):正文科技股份有限公司
「醫療器材讀數智慧辨識 MEOCR」是一個結合了物件偵測以及 OCR 技術的服務,可將量測完的醫療器材照片自動轉換成對應的量測讀數。此服務讓 APP 使用者透過手機拍攝照片完成健康數據的紀錄 ,改善原本使用者判讀不正確、輸入錯誤、輸入流程費時等使用者體驗不佳的問題。
🏭 培訓成果亮點企業(二):新呈工業股份有限公司
「AI檢測連結器卡榫」使用 YOLO 物件偵測的技術,利用產品卡榫特徵/顏色進行區隔並進行模型訓練,將攝像頭抓取到的圖像擷取,送入CNN網路處理預測結果得到檢測的目標,最後進行網絡預測判斷連結器是否安裝卡榫,結合 Kneron dongle 提升運算速率外可節省硬體(主機)成本金額花費。
🏭 培訓成果亮點企業(三):東鄉工業有限公司
「原材表面缺陷檢查系統」適用於鋼捲、銅鋁箔、軟式電路板、PET膜等電子化工原材表面檢查,自動光學檢測領域結合了光學、機械、電機和資訊等多種技術領域,廣泛應用於各種產業或相關的產品。
想得到的實際應用影像檢測分析技術,都在「AI產品瑕疵檢測-應用CNN物件偵測實作班」這門課,培訓成果看得見,結訓後將課堂所學直接導入企業,創造最大商業價值!
立即了解課程內容>> https://bit.ly/3UI3fvy
0 0 2542 1
學習精靈

02/24 00:00

14 0

推薦給你

知識貓星球

喵星人

4小時前

「程式設計師 vs 工程師」都寫程式!兩者差在哪? 各在做什麼?小細節曝光
工程師和程式設計師有什麼差別?這兩個詞常被交替使用,聽起來似乎都是寫程式的高手,但實際上,兩者之間還是有一些許差異。
#程式設計師(Programmer)主要專注於寫程式碼,他們的工作就像是把想法轉化為具體的指令,讓電腦依照這些指令運作。程式設計師每天面對的就是無數的程式碼片段,他們必須解決問題的過程,無論是修復Bug還是優化功能。可以說,程式設計師的主要任務是「如何讓程式能動」。
#工程師(Engineer)則是一個範疇更廣的角色。除了寫程式碼,他們還要負責整個系統的設計和架構,確保所有的元件可以協同工作,系統穩定運行。工程師不僅僅要考慮「程式能動」,還得考慮「程式運作好」,例如效能、擴展性、安全性等問題。
那麼簡單來說,程式設計師專注於「解決具體問題」,而工程師則更像是「全局的規劃師」,他們需要從更高的層次來思考整個系統。程式設計師就像是把每塊磚頭放在正確位置的工匠,而工程師則像是設計這棟建築的建築師。
當然,在現實中,這兩個角色常常重疊,很多程式設計師具備工程師的思維,很多工程師也必須編寫程式。因此,無論是程式設計師還是工程師,兩者最終的目標都是同一個「讓技術變得更強大,讓系統更加完美」!
0 0 85 0
你可能感興趣的教室