104學習精靈

OCR

OCR
關注
邀請朋友
邀請朋友

Line

Facebook

複製連結

取消
關於教室
關注人數 0 人
104人力銀行從職缺中挑選出常見技能所成立的官方教室,提供大家進行共學互動。
學習主持人
持續分享知識,
有機會成為官方教室主持人
教室標籤
關於教室
關注人數 0 人
104人力銀行從職缺中挑選出常見技能所成立的官方教室,提供大家進行共學互動。
學習主持人
持續分享知識,
有機會成為官方教室主持人
教室標籤
Hi~ 歡迎分享學習資源,有學習問題可匿名向Giver發問!
我要分享
我要提問

OCR 學習推薦

全部
影片
文章
緯育TibaMe

2022/12/07

企業如果想導入AI瑕疵檢測技術該怎麼做?三大產業成功案例分享
▍專家認為,製造業是 AI 在台灣最具發展潛力的產業領域
製造業的產品檢測,搭配高解析度的攝影機與光學元件配置進行機器視覺系統的建置,結合自動化流程設定,即得自動光學檢測辨識 ( Automatic Optical Inspection , AOI ),可輕鬆檢測小到人眼無法看到的物件細節、兼具高效辨識穩定性。
• 搭配AI建模的瑕疵檢測,有效提升辨識精準度、生產力、效率。
• 檢測漏檢率僅0.1%,超過人眼辨識10倍以上。因此在生產線上,機器視覺系統每分鐘能快速且精確的檢測數百個,甚至數千個物件,遠勝於人工的檢測能力。
• 應用產業:PCB、半導體產業、手機零件、醫療器材、各製造業(ex: 相機光學鏡片、高爾夫球、紡織業..等)高單價商品,AI建模提升辨識良率精準度外,提升產線的良率也非常重要。
• AOI不僅是篩檢瑕疵品的剔除者,也蒐集不良品資料,由瑕疵檢測細項數據分析、歸納找出每階段製程不良的原因,減低不良品生成,提升產線良率。
▍產業檢測必備,AI 優化 AOI 影像辨識率
AI深度學習技術利用神經網路,將需辨識的圖像類型加上標示,進而從這些圖像中辨識物件已知的功能特徵,異常和類別進行系統模型的訓練。
在訓練期間,訓練系統 AI模型辨識明確的缺陷瑕疵、存在多種形式的缺陷、和學習物件的正常外觀,包括顯著但可容許的變化。將 AI 助攻 AOI用於產品外觀檢測,涵蓋人工檢測的靈活度、機器檢測所具備的高可靠性,錯誤率更低,辨識速度更快的特性。
AOI自動光學檢測辨識系統,以非接觸式運用機器視覺擷取影像進行分析,應用層面遍及高科技產業研發、製造品管、電子機械業、醫療業等多種產業。
因AOI為非接觸式擷取影像進行分析,為業界廣泛應用於半成品或製程不影響產能的影像抽檢,特別是部分產業,例如印刷電路板(PCB)在極高良率要求,以AI智慧化檢測系統來減低AOI過篩誤判的現象,更能優化後續篩檢,提增影像辨識精確度。
▍如果想學習AI瑕疵檢測並導入企業該怎麼做
AOI 搭配 AI深度學習技術,已成功部署於產業進行實務運用,讓深度學習更普及於市場上各產業優化的必備技術。
TibaMe的「AI產品瑕疵檢測-應用CNN物件偵測實作班」,能讓學員瞭解常見產品瑕疵影像任務種類與深度學習如何應用在產品瑕疵影像辨識的整體概念,使學員在應用與研發相關系統時,能充分瞭解須注意的重點。
授課講師具有台大資工所背景,曾參與多項知名公司AI專案開發經驗,並於科技軟體公司擔任工程師,具備豐富的AI專案實務開發與軟體整合經驗。
這堂課,你將學會:
一、業界專業視角定義瑕疵影像分類,確認每個瑕疵影像邊緣
二、以物件偵測找出瑕疵並標註範圍與各瑕疵類別比對
三、AI建模學習瑕疵類別與範圍
四、以實際影像進行檢驗,比對模型辨識準確度(Accuracy)與辨識位置
五、AI影像辨識建模的基本功
六、了解各類經典AI模型
七、實作AI建模分析
產學接軌,榮獲2022年AIGO金質培訓課程
🏭 培訓成果亮點企業(一):正文科技股份有限公司
「醫療器材讀數智慧辨識 MEOCR」是一個結合了物件偵測以及 OCR 技術的服務,可將量測完的醫療器材照片自動轉換成對應的量測讀數。此服務讓 APP 使用者透過手機拍攝照片完成健康數據的紀錄 ,改善原本使用者判讀不正確、輸入錯誤、輸入流程費時等使用者體驗不佳的問題。
🏭 培訓成果亮點企業(二):新呈工業股份有限公司
「AI檢測連結器卡榫」使用 YOLO 物件偵測的技術,利用產品卡榫特徵/顏色進行區隔並進行模型訓練,將攝像頭抓取到的圖像擷取,送入CNN網路處理預測結果得到檢測的目標,最後進行網絡預測判斷連結器是否安裝卡榫,結合 Kneron dongle 提升運算速率外可節省硬體(主機)成本金額花費。
🏭 培訓成果亮點企業(三):東鄉工業有限公司
「原材表面缺陷檢查系統」適用於鋼捲、銅鋁箔、軟式電路板、PET膜等電子化工原材表面檢查,自動光學檢測領域結合了光學、機械、電機和資訊等多種技術領域,廣泛應用於各種產業或相關的產品。
想得到的實際應用影像檢測分析技術,都在「AI產品瑕疵檢測-應用CNN物件偵測實作班」這門課,培訓成果看得見,結訓後將課堂所學直接導入企業,創造最大商業價值!
立即了解課程內容>> https://bit.ly/3UI3fvy
0 0 2557 1
104學習精靈精選課程
想提升職場競爭力?專業技能課程看起來👇
AI電腦視覺與影像處理實務
隨著美中貿易戰持續升溫與疫情肆虐,全球的工業布局重新洗牌,醫療科技瞬間抬頭的趨勢下,電腦視覺在工業與醫學資訊的應用更是勢不可擋。而影像視覺是AI的三大應用重點之一,OpenCV是電腦視覺開源應用的始祖,其兼容Python語言更使其與AI的整合更加容易。 在工業檢測AOI領域中,OpenCV是業界算法軟體自製的唯一選擇。在醫學領域,可透過Python套件實現許多醫學影像的讀取與寫入,搭配OpenCV的使用更可實現相關的影像分割等算法。 本課程由資深業師濃縮多年影像實戰經驗,提取最佳學習路徑,透過Python與OpenCV,帶領學員縱橫物件偵測、車牌辨識、工業AOI、醫學影像、視頻監控等應用,引導學員們一揭電腦視覺與開源社群的浩瀚海洋,使具備紮實的戰力投入於理想的視覺應用領域中。 適合對象 欲從事影像處理、電腦視覺、影像分析、影像辨識等演算法開發與實作驗證的工程師、研究者、創客。 想了解影像處理的演算法於嵌入式系統之移植與效能調整。 理解數位電腦視覺原理並能實作,包含:影像特徵提取、特徵強化、輪廓萃取、卷積運算、型態學運算。 從事深度學習在影像處理(如CNN)的研發,而對於影像處理關於物件識別、偵測的底層知識有興趣。 從事FPGA 影位影像訊號的處理,但想要理解底層影像處理相關的演算法。 課程大綱 第一階段 影像處理實務 影像處理實務 -數位影像的生成與結構 OpenCV 基礎認識 -OpenCV可以做什麼 -函式庫的組成及內容 環境配置 -Python簡介 -IDE(VS Code) + CV Library 影像格式與資料結構 影像處理四部曲 -影像讀取 -影像顯示 -色彩空間轉換 -影像儲存 視頻: VideoCapture 影像基本資訊 -值 : Pixel value -圖像ROI (Region of interests) -拆解和合併通道 (RGB)圖像基本運算 -圖像混和 影像正規化與二值化 型態學運算 卷積運算 (Convolution) 影像去雜訊、模糊與強化 影像的幾何轉換 UI Bar 繪圖 影像處理與特徵擷取 -影像特徵擷取 -特徵擷取算法--Fast, Harris, GFTT, SIFT, SURF, STAR, BRISK, ORB, Histogram -HOG演算法 輪廓搜尋與提取 -影Edge -直線偵測 -圓形偵測 -角點偵測 -影像物件計數與分析 第二階段 主題實作 自動車牌辨識(ALPR) -基礎知識 - YOLO -使用PaddleOCR建置自動車牌辨識 -使用YOLOv4建置自動車牌辨識 -PaddleOCR方法比較: pp-ocr, pp-ocr(server), SRN AOI測量 -AOI自動光學檢測機(產業趨勢分享與解析) -從事影像演算法研發人員在產業中的定位 -Template Matching -取得邊緣點 -擬合直線 -測量線到線的距離 0001 OP 0002 OP 醫學影像 -醫學影像基本知識 -分水嶺算法 -影像的處理 -實作CXR肺分割 -移除脊椎 -角點偵測 -計算肺部區域 透過OpenCV實作CXR肺分割 視訊處理與視訊穩定 -影片資料處理概念 -攝影機取像 、運算 、儲存 -視訊檔案讀取與視訊屬性 -透過VidStab模組實作視頻穩定 -使用VidStab類 -幀到幀的座標轉換 -使用Borders與Frame Layering -套用視頻穩定算法 -應用於線上視頻 0004 OP ※以上應用主題,每梯次選用可能不同 ※實際授課大綱請以提供之最新開課簡章內容為準 *本課程需準備WebCam
艾鍗學院
AI電腦視覺與影像處理實務
隨著美中貿易戰持續升溫與疫情肆虐,全球的工業布局重新洗牌,醫療科技瞬間抬頭的趨勢下,電腦視覺在工業與醫學資訊的應用更是勢不可擋。而影像視覺是AI的三大應用重點之一,OpenCV是電腦視覺開源應用的始祖,其兼容Python語言更使其與AI的整合更加容易。 在工業檢測AOI領域中,OpenCV是業界算法軟體自製的唯一選擇。在醫學領域,可透過Python套件實現許多醫學影像的讀取與寫入,搭配OpenCV的使用更可實現相關的影像分割等算法。 本課程由資深業師濃縮多年影像實戰經驗,提取最佳學習路徑,透過Python與OpenCV,帶領學員縱橫物件偵測、車牌辨識、工業AOI、醫學影像、視頻監控等應用,引導學員們一揭電腦視覺與開源社群的浩瀚海洋,使具備紮實的戰力投入於理想的視覺應用領域中。 適合對象 欲從事影像處理、電腦視覺、影像分析、影像辨識等演算法開發與實作驗證的工程師、研究者、創客。 想了解影像處理的演算法於嵌入式系統之移植與效能調整。 理解數位電腦視覺原理並能實作,包含:影像特徵提取、特徵強化、輪廓萃取、卷積運算、型態學運算。 從事深度學習在影像處理(如CNN)的研發,而對於影像處理關於物件識別、偵測的底層知識有興趣。 從事FPGA 影位影像訊號的處理,但想要理解底層影像處理相關的演算法。 課程大綱 第一階段 影像處理實務 影像處理實務 -數位影像的生成與結構 OpenCV 基礎認識 -OpenCV可以做什麼 -函式庫的組成及內容 環境配置 -Python簡介 -IDE(VS Code) + CV Library 影像格式與資料結構 影像處理四部曲 -影像讀取 -影像顯示 -色彩空間轉換 -影像儲存 視頻: VideoCapture 影像基本資訊 -值 : Pixel value -圖像ROI (Region of interests) -拆解和合併通道 (RGB)圖像基本運算 -圖像混和 影像正規化與二值化 型態學運算 卷積運算 (Convolution) 影像去雜訊、模糊與強化 影像的幾何轉換 UI Bar 繪圖 影像處理與特徵擷取 -影像特徵擷取 -特徵擷取算法--Fast, Harris, GFTT, SIFT, SURF, STAR, BRISK, ORB, Histogram -HOG演算法 輪廓搜尋與提取 -影Edge -直線偵測 -圓形偵測 -角點偵測 -影像物件計數與分析 第二階段 主題實作 自動車牌辨識(ALPR) -基礎知識 - YOLO -使用PaddleOCR建置自動車牌辨識 -使用YOLOv4建置自動車牌辨識 -PaddleOCR方法比較: pp-ocr, pp-ocr(server), SRN AOI測量 -AOI自動光學檢測機(產業趨勢分享與解析) -從事影像演算法研發人員在產業中的定位 -Template Matching -取得邊緣點 -擬合直線 -測量線到線的距離 0001 OP 0002 OP 醫學影像 -醫學影像基本知識 -分水嶺算法 -影像的處理 -實作CXR肺分割 -移除脊椎 -角點偵測 -計算肺部區域 透過OpenCV實作CXR肺分割 視訊處理與視訊穩定 -影片資料處理概念 -攝影機取像 、運算 、儲存 -視訊檔案讀取與視訊屬性 -透過VidStab模組實作視頻穩定 -使用VidStab類 -幀到幀的座標轉換 -使用Borders與Frame Layering -套用視頻穩定算法 -應用於線上視頻 0004 OP ※以上應用主題,每梯次選用可能不同 ※實際授課大綱請以提供之最新開課簡章內容為準 *本課程需準備WebCam
艾鍗學院
學習精靈

07/03 00:00

9 0
學習精靈

06/10 00:00

5 0

推薦給你

知識貓星球

喵星人

38分鐘前

PM專案管理概念:當責與授權為何?如何應用在職場中
在管理學中,「當責」與「授權」是兩個核心概念,對於有效的專案管理(Project Management, PM)具有重要的影響。以下將分別解釋這兩個概念,並說明它們在專案管理中的應用。
▲ 當責(Accountability)
➛ 定義
當責指的是個人或團隊對其所承擔的職責和結果負有明確的責任。這意味著他們需要對所做的決策、行動以及最終成果負起全責,並對上級或相關方報告。
➛ 重要性
- 確保目標達成:當責制度可以促使團隊成員更專注於目標的實現,減少推諉責任的情況。
- 提高績效:明確的責任分工有助於提升工作效率和質量。
- 增強信任:當每個人都對自己的職責負責,整個團隊的信任感和合作精神會得到提升。
▲ 授權(Delegation/Authorization)
➛ 定義
授權是指上級將某些職責、決策權或資源分配給下屬或團隊,使其能夠自主完成特定任務。這不僅是分配工作,更涉及賦予相應的權力和資源,以便有效執行。
➛ 重要性
- 提升效率:透過授權,可以減少上級的工作負擔,讓專業的人員處理專業的事務。
- 培養人才:授權讓下屬有機會發揮潛力,提升技能,為未來的發展做準備。
- 促進創新:當下屬有更多的自主權時,往往會提出更多創新性的想法和解決方案。
【在專案管理中的應用】
在專案管理中,當責與授權的有效結合是確保專案成功的關鍵。
▲ 當責在專案管理中的應用
1. 明確角色與責任:在專案啟動階段,需明確界定每個成員的角色和責任,確保每個人知道自己需要完成的任務。
2. 設定績效指標:為每個責任單位設定明確的績效指標,以便評估進度和成果。
3. 定期檢討與反饋:通過定期的進度會議和評估,確保每個人都對自己的任務負責,並及時調整偏差。
▲ 授權在專案管理中的應用
1. 分解專案任務:將專案分解成不同的子任務,並將這些任務授權給最合適的團隊或個人,確保每個部分都有專人負責。
2. 提供必要資源:確保被授權的成員擁有完成任務所需的資源,包括時間、預算和工具等。
3. 授予決策權:在合理範圍內,授予團隊成員一定的決策權,讓他們能夠靈活應對專案中的變化和挑戰。
4. 支持與指導:雖然授權,但管理者仍需提供必要的支持和指導,確保授權過程順利,並能及時解決遇到的問題。
【實例說明】
假設一個軟體開發專案,專案經理(PM)負責整體規劃和監控。在專案中,PM可以將前端開發、後端開發、測試等不同模塊授權給相應的團隊負責。每個團隊對其模塊的進度和質量負有當責,同時擁有相應的決策權來選擇技術方案和解決問題的方法。PM則定期檢查各團隊的進展,提供必要的支持,確保專案按時按質完成。
【總結】
「當責」與「授權」是管理中的兩個互補概念,當責確保每個人對自己的工作負責,授權則賦予他們完成工作的自主權。在專案管理中,通過明確責任分工和合理授權,可以提升團隊的效率和凝聚力,從而有效推動專案的成功實施。
0 0 18 0
你可能感興趣的教室