104學習精靈

資料探勘

資料探勘
關注
邀請朋友
邀請朋友

Line

Facebook

複製連結

取消
「資料探勘:負責從大量數據中發掘有價值的資訊,以支持業務決策並提升經營效益。主要責任包括制定數據分析策略、使用各種數據探勘技術(如機器學習、統計分析)來識別趨勢與模式,以及撰寫報告以清楚呈現結果。要求具備強大的數據處理能力與編程技能(如Python、R),並熟悉資料庫管理(如SQL)。此外,需具備良好的跨部門協作與溝通技巧,以便有效解釋分析結果並推動改善措施,特別是在快速變動的台灣市場環境中,應對資料完整性與準確性挑戰。」
關於教室
關注人數 12 人
104人力銀行從職缺中挑選出常見技能所成立的官方教室,提供大家進行共學互動。
學習主持人
持續分享知識,
有機會成為官方教室主持人
教室標籤
關於教室
關注人數 12 人
104人力銀行從職缺中挑選出常見技能所成立的官方教室,提供大家進行共學互動。
學習主持人
持續分享知識,
有機會成為官方教室主持人
教室標籤
Hi~ 歡迎分享學習資源,有學習問題可匿名向Giver發問!
我要分享
我要提問

資料探勘 學習推薦

全部
影片
文章
一零四線上嚴選

小編

2022/10/08

[AI關鍵技能:資料探勘] 一步到位_原理、分類及聚類演算
這兩週連續介紹兩個AI關鍵技術,本週是另一個關鍵技術「資料探勘」;
這兩週所分享的機器學習與資料探勘,可以做到的不只是 AlphaGO 所能做到的與人類下棋,更可以擴大應用範圍至網路電商的商品推薦、製造業的自動化製造流程等,所以會被視為關鍵技術。
本週課程專門針對「資料探勘」來分享;本課程我們可以獲得以下知識技能:資料探勘的原理、關聯規則原理與實務、分類原理、聚類原理、平均聚類演算法、階層聚類技術、DBSCAN密度式聚類法等。
那需要如何依序學習呢? 課程將分為三大部分進行教學,分別為:資料探勘概論及關聯規則、分類概念與技術、聚類概念與技術。
第一部分資料探勘部分,老師從學習方法開始分享,讓我們往後接觸時,可以快速掌握;接下來就會定義資料探勘的意義,以了解其重要性。之後,將會帶我們知道目前主要技術有哪些、各自在哪些地方應用、業界常用的專業用語;,在第一部份下半段,會開始學習Apriori 及 FP-Growth 兩種演算法;透過兩種演算法所獲得的資料支持度與信賴度該如何看。
第二部分及第三部份分別要學分類與聚類概念;將會以演算法帶大家了解分類與聚類演算法;除了演算法的部分是必要的技術外,還會學習如何衡量分類模型準確性、決策樹、屬性選擇指標、屬性分割等。
這門課程希望參與的學員能夠一次帶領大家學會資料探勘所有觀念及技術。
推薦課程網址:
祝您 工作順利、學習愉快
104學習精靈小編 陪您每日學習成長1%
看更多
0 0 523 0

熱門精選

104學習

產品

09/11 14:57

轉職首選!3 週從零到上手的數據分析師養成營 —— 104人力銀行 × 104學習 × 緯育 TibaMe 聯合推出
想跨入高薪、有前景,又能左右商業決策的數據分析師職涯,但擔心自己沒有程式背景、時間不夠嗎?
這堂【數據分析師學習營】或許是你理想的起點。
✨ 首次跨界合作,更強大資源整合✨
這次由 104學習精靈 首度攜手 緯育 TibaMe 聯合打造。
⚡104人力銀行 × 104學習精靈:深耕職涯數據多年,最了解台灣企業用人需求,課程更貼近市場實際職缺。
⚡緯育 TibaMe:累積多年產業培訓經驗,專注於 IT、數據、AI 等熱門技能轉職養成,培訓模式完整,輔導成效有口碑。
這樣的合作,讓學員享有真實的培訓經驗,學習效果與轉職落地率都更具保障。
課程亮點一次看
🔥3 週密集實戰:短短三週密集訓練,快速掌握職場必備技能,不必耗費半年、一年時間啃課表。
🔥零基礎設計:無需工程背景,也不用寫程式,由淺入深帶你學會資料庫查詢(SQL)與數據視覺化工具 Power BI。
🔥實戰作品累績履歷實力:課程設計強調實務操作,結訓不僅懂工具,更手上有完成的作品,讓履歷直接升級。
🔥專屬平台與支援:透過共學社群與專業助教協助,學習不再孤單。
為什麼你該報名?
🟢快速起步,快速看成果:三週聚焦提速進展,是在職或時間有限者的最佳選擇。
🟢具備市場需求核心技能:SQL 與 Power BI,完全符合企業當前的數據分析需求。
🟢履歷實力落地具體化:實作作品比起只學理論更能打動雇主眼光。
🟢104 × 緯育 TibaMe 強強聯手:把資源與專業結合,讓學習不只停留在課程,而是直通「就業」與「轉職」。
👉 立即報名,搶先卡位:超小班就50位唷!
👉 刷中信/台新/玉山可享3期0利率!
👉 超早鳥優惠領$850券報名到9/24唷!
👉 前10名解鎖送500元Line點數,第11名起送200元Line點數,更多驚喜組合購,可再額外送100元Line點數
看更多
3 0 10180 4

104學習精靈精選課程

看更多課程
想提升職場競爭力?專業技能課程看起來👇
學習精靈

12/03 00:00

52 0
Mike Ku

Learn Code With Mike品牌創辦人

2021/11/24

4個必學的Pandas套件處理遺漏值資料方法
本文以Kaggle網站的「Netflix data with IMDB scores added( https://www.kaggle.com/sarahjeeeze/imdbfile )」資料集為例,來和大家分享筆者在處理遺漏值(Missing Value)時,常用的Pandas套件方法(Method)。
Q:Pandas如何探索遺漏值(Missing Value)?
如果想要探索每一個欄位資料是否有遺漏值(Missing Value),通常會使用Pandas套件的isnull()方法(Method)來查看,如下範例:
df = pd.read_csv('mycsvfile.csv')
print(df.isnull())
Pandas套件的isnull()方法(Method)會將所有欄位資料內容顯示為布林值(Boolean),只要是遺漏值(Missing Value)就會顯示為True。
但是這樣並沒有辦法讓我們快速瞭解每個欄位的遺漏值(Missing Value)狀況,這時候就可以搭配使用Pandas套件的sum()方法(Method),將每個欄位進行加總,瞭解每個欄位的遺漏值(Missing Value)個數,如下範例:
df = pd.read_csv('mycsvfile.csv')
print(df.isnull().sum())
由於在Python中,True代表1,False代表0,所以利用Pandas套件的isnull()與sum()方法(Method),就能夠知道資料集的每個欄位遺漏值(Missing Value)個數。
Q:Pandas如何檢視遺漏值(Missing Value)?
探索了每個欄位的遺漏值(Missing Value)個數後,如果想要特別檢視特定欄位的遺漏值(Missing Value)資料內容,就可以利用以下的Pandas套件篩選語法:
df = pd.read_csv('mycsvfile.csv')
print(df[df.date_added.isnull()])
以上範例,就是檢視date_added(新增日期)欄位的11筆遺漏值(Missing Value)資料內容。
Q:Pandas dropna()方法(Method)如何使用?
Pandas套件提供了dropna()方法(Method)來因應不同的需求,包含:
1.dropna(how='any'):任一欄位有遺漏值(Missing Value)的資料就移除,如下範例:
df = pd.read_csv('mycsvfile.csv')
print(df.dropna(how='any'))
2.dropna(how='all'):所有欄位皆有遺漏值(Missing Value)的資料就移除,如下範例:
df = pd.read_csv('mycsvfile.csv')
print(df.dropna(how='all'))
3.dropna(subset=['欄位名稱', ...], how='any'):任一個指定的欄位有遺漏值(Missing Value)的資料就移除,如下範例:
df = pd.read_csv('mycsvfile.csv')
print(df.dropna(subset=['director', 'date_added'], how='any'))
4.dropna(subset=['欄位名稱', ...], how='all'):指定的欄位皆有遺漏值(Missing Value)的資料就移除,如下範例:
df = pd.read_csv('mycsvfile.csv')
print(df.dropna(subset=['director', 'date_added'], how='all'))
Q:Pandas fillna()方法(Method)如何使用?
另一個遺漏值(Missing Value)資料的處理方式,就是填入自訂的值,這時候就能利用Pandas套件的fillna()方法(Method),指定value關鍵字參數(Keyword Argument)為想要填入的值即可,如下範例:
df = pd.read_csv('mycsvfile.csv')
df['director'].fillna(value='Not Found', inplace=True)
如果想要學習更多的Python應用教學,歡迎前往Learn Code With Mike( https://www.learncodewithmike.com/2021/07/pandas-handle-missing-value.html )網站觀看更多精彩內容。
看更多
2 0 162 2
學習精靈

05/22 00:00

297 14

推薦給你

104學習

產品

09/15 14:38

「環境部淨零綠領人才培育課程」首次測驗今登場 逾千名考生應試 到考率超過96%
「環境部淨零綠領人才培育課程」首場集中測驗今天在全國14個考區同步舉行,約1,400名完成48小時專業課程的學員參加測驗,到考率超過96%。凡是30歲以下在學生(不含在職專班者)及低(中低)收入戶,測驗及格者可申請學費優惠。環境部部長彭啓明為鼓勵這些通過測驗的綠領人才成為推動國家淨零轉型的生力軍,後續將擇優選出20名成績優異者,規劃於行政院大禮堂舉辦合格證明頒發典禮,以表示對於綠領人才的尊重並彰顯其榮譽。
-
主辦本次測驗的國家環境研究院(國環院)表示,參加本次測驗的學員,男女比例約為1比1,平均年齡為33歲,最年輕的學員年齡僅17歲,最年長者為69歲。而社會人士占五成多,略高於在學學生的四成多;三成具研究所以上學歷,兩成為文法商等跨領域背景,顯示各年齡層及不同專業領域對綠色轉型專業知能的高度需求。
-
國環院又指出,學員職業背景相當多元,除了大專院校在學生,也有來自各行各業的專業人士,包括上市櫃公司主管、會計師、資訊工程師與環工技師,甚至還有美髮業者與電影剪接師參與,充分展現綠領課程已成為跨領域專業人才進修與轉型的重要管道。
-
本次測驗採筆試方式,測驗後15個工作天內,國環院將寄發電子成績單,及格者同時可獲環境部核發的官方合格證明,請學員務必留意信件收取。國環院提醒,凡30歲以下大專院校在學生(不含在職專班),只要首次測驗及格即可申請新臺幣6,000元半額補助;符合中低收入戶、低收入戶或身心障礙身分者,則可申請新臺幣12,000元全額補助。學員取得成績單後,可逕向原開班學校申請學費減免事宜。
-
國環院強調,課程將持續開班招生,有興趣者可至「綠領人才資訊平臺」就近報名:https://ulvis.net/iTs8
下一場集中測驗訂於11月22日舉行,並將增設南投與離島考區,便利更多學員參與。
-
立即報名「環境部淨零綠領人才培育課程」:
看更多
0 0 876 0
你可能感興趣的教室