104學習

資料結構

資料結構
關注
邀請朋友
邀請朋友

Line

Facebook

複製連結

取消
「資料結構:負責設計、實現及維護高效的數據結構,以提升系統性能和數據處理效率。主要目標包括優化數據存取速度、降低資源消耗,並支持業務決策分析。需具備扎實的程式設計能力,熟悉資料結構與演算法,並具備跨部門協作能力及良好的溝通技巧,以確保與產品開發和數據分析團隊的緊密協作。面對台灣快速變化的科技環境,需要具備適應性和持續學習的意願,理解當地業務需求,能靈活運用技術解決具體問題。」
關於教室
關注人數 7 人
104人力銀行從職缺中挑選出常見技能所成立的官方教室,提供大家進行共學互動。
學習主持人
持續分享知識,
有機會成為官方教室主持人
教室標籤
關於教室
關注人數 7 人
104人力銀行從職缺中挑選出常見技能所成立的官方教室,提供大家進行共學互動。
學習主持人
持續分享知識,
有機會成為官方教室主持人
教室標籤
Hi~ 歡迎分享學習資源,有學習問題可匿名向Giver發問!
我要分享
我要提問

資料結構 學習推薦

趙之君

Android與跨平台架構師

2022/02/22

Android 面試題庫,你瞭解多少?
在專業工程面試中,除了經常會有的演算法、資料結構問題,也有相關領域的專業題目。對 Android 工程,以下網站總結了滿多 Android 領域的面試題,建議面試前可以複習一下。就算沒有要面試,也可以透過這些問題,更了解自己對 Android 的理解程度~
看更多
2 0 3026 1
Mike Ku

Learn Code With Mike品牌創辦人

2021/10/27

Pandas DataFrame處理雙維度資料方法(4)
Q:如何取得Pandas DataFrame資料?
1.head():取得最前面的n筆資料,並且會回傳一個新的Pandas DataFrame資料集,如下範例:
grades = {
"name": ["Mike", "Sherry", "Cindy", "John"],
"math": [80, 75, 93, 86],
"chinese": [63, 90, 85, 70]
}
df = pd.DataFrame(grades)
new_df = df.head(2)
print(new_df) #取得最前面的兩筆資料
2.tail():取得最後面的n筆資料,並且會回傳一個新的Pandas DataFrame資料集,如下範例:
grades = {
"name": ["Mike", "Sherry", "Cindy", "John"],
"math": [80, 75, 93, 86],
"chinese": [63, 90, 85, 70]
}
df = pd.DataFrame(grades)
new_df = df.tail(3)
print(new_df) #取得最後面的三筆資料
3.中括號[]:在中括號中指定「欄位名稱」或「資料索引值」,來取得所需的資料集,如下範例:
grades = {
"name": ["Mike", "Sherry", "Cindy", "John"],
"math": [80, 75, 93, 86],
"chinese": [63, 90, 85, 70]
}
df = pd.DataFrame(grades)
print(df[["name"]]) #取得單一欄位資料(型別為DataFrame)
print(df[["name", "chinese"]]) #取得多欄位資料(型別為DataFrame)
print(df[0:3]) #取得索引值0~2的資料
4.at[資料索引值,欄位名稱]:利用資料索引值及欄位名稱來取得「單一值」,如下範例:
grades = {
"name": ["Mike", "Sherry", "Cindy", "John"],
"math": [80, 75, 93, 86],
"chinese": [63, 90, 85, 70]
}
df = pd.DataFrame(grades)
print(df.at[1, "math"]) #利用at()方法取得索引值為1的math欄位資料
5.iat[資料索引值,欄位順序]:利用資料索引值及欄位順序來取得「單一值」,如下範例:
grades = {
"name": ["Mike", "Sherry", "Cindy", "John"],
"math": [80, 75, 93, 86],
"chinese": [63, 90, 85, 70]
}
df = pd.DataFrame(grades)
print(df.iat[1, 0]) #取得索引值為1的第一個欄位資料"
5.loc[資料索引值,欄位名稱]:利用資料索引值及欄位名稱來取得「資料集」,如下範例:
grades = {
"name": ["Mike", "Sherry", "Cindy", "John"],
"math": [80, 75, 93, 86],
"chinese": [63, 90, 85, 70]
}
df = pd.DataFrame(grades)
print(df.loc[[1, 3], ["name", "chinese"]]) #取得資料索引值為1和3的name及chinese欄位資料集
6.iloc[資料索引值,欄位順序]:利用資料索引值及欄位順序來取得「資料集」,如下範例:
grades = {
"name": ["Mike", "Sherry", "Cindy", "John"],
"math": [80, 75, 93, 86],
"chinese": [63, 90, 85, 70]
}
df = pd.DataFrame(grades)
print(df.iloc[[1, 3], [0, 2]]) #取得資料索引值為1和3的第一個及第三個欄位資料集
如果想要學習更多的Python應用教學,歡迎前往Learn Code With Mike( https://www.learncodewithmike.com/2020/11/python-pandas-dataframe-tutorial.html )網站觀看更多精彩內容。
看更多
2 0 449 0

104學習精選課程

看更多課程
想提升職場競爭力?專業技能課程看起來👇

熱門精選

104學習

產品

01/16 10:26

【第二屆數據分析師學習營】開跑!超早鳥優惠現賺 $1,611,保握機會。
【第二屆數據分析師學習營】開跑!
0經驗&無工程背景,3週帶你開啟數據職涯!
【優惠只到 2026/1/23 (五)】超早鳥領$1,111送5百元line點數
【本次學習營特色】
🟢 免離職,假日上課,工作學習兩不誤
🟢 線上實體直播課,不分地區都能參加
🟢 助教小組全程陪伴,有問題隨時解答
🟢 3週完成業界實作專案,無基礎也能做出作品
🟢 104獨家完訓證明,提升您的履歷曝光度
🟢 刷中信 / 台新 / 玉山信用卡 → 享 3 期 0 利率
【學員課後感想回饋】
⚡莊小姐⚡從完全的數據分析小白,到現在學會基礎獨立完成專案,這是讓我最有收穫的部分。
⚡蕭先生⚡課程設計很適合新手,一開始會帶學員建立資料分析思維,並在接下來的課程用學習使用SQL、Power BI等工具,雖然課程為新手導向,但最後的專題報告仍具備挑戰性,評審的回饋也很有力,真的能夠獲得實戰經驗,超推薦!
⚡Miss Chen⚡對我來說硬實力及相關技能在網路上都有很多資源可以學習,課前最吸引我以及課中感受最深的就是跟不同學員的互動及想法交流,這是外面學不到的,再來就是業界講師的專業指教,也是非常難得且受用!
【保握超早鳥優惠|錯過就不在|還有多組合購優惠】
看更多
1 0 11865 0
Mike Ku

Learn Code With Mike品牌創辦人

2021/10/27

Pandas DataFrame處理雙維度資料方法(2)
Q:如何新增Pandas DataFrame資料?
1.insert():在指定的欄位位置新增欄位資料,如下範例:
grades = {
"name": ["Mike", "Sherry", "Cindy", "John"],
"math": [80, 75, 93, 86],
"chinese": [63, 90, 85, 70]
}
df = pd.DataFrame(grades)
df.insert(2, column="engilsh", value=[88, 72, 74, 98])
print("在第三欄的地方新增一個欄位資料")
print(df)
2.append():新增一筆或一列的資料,透過傳入字典來指定各欄位的值,並且會回傳一個新的Pandas DataFrame資料集,如下範例:
grades = {
"name": ["Mike", "Sherry", "Cindy", "John"],
"math": [80, 75, 93, 86],
"chinese": [63, 90, 85, 70]
}
df = pd.DataFrame(grades)
new_df = df.append({
"name": "Henry",
"math": 60,
"chinese": 62
}, ignore_index=True)
print("新增一筆資料")
print(new_df)
3.concat():利用合併多個Pandas DataFrame的方式來新增資料,並且會回傳一個新的Pandas DataFrame資料集,如下範例:
grades = {
"name": ["Mike", "Sherry", "Cindy", "John"],
"math": [80, 75, 93, 86],
"chinese": [63, 90, 85, 70]
}
df1 = pd.DataFrame(grades)
df2 = pd.DataFrame({
"name": ["Henry"],
"math": [60],
"chinese": [62]
})
new_df = pd.concat([df1, df2], ignore_index=True)
print("合併df來新增資料")
print(new_df)
Q:如何排序Pandas DataFrame資料?
1.sort_index():依照索引值來進行排序,並且會回傳一個新的Pandas DataFrame資料集,如下範例:
grades = {
"name": ["Mike", "Sherry", "Cindy", "John"],
"math": [80, 75, 93, 86],
"chinese": [63, 90, 85, 70]
}
df = pd.DataFrame(grades)
df.index = ["s3", "s1", "s4", "s2"]
new_df = df.sort_index(ascending=True)
print("遞增排序")
print(new_df)
new_df = df.sort_index(ascending=False)
print("遞減排序")
print(new_df)
2.sort_values():依照欄位內容來進行排序,並且會回傳一個新的Pandas DataFrame資料集,下面範例以math欄位內容來進行排序:
grades = {
"name": ["Mike", "Sherry", "Cindy", "John"],
"math": [80, 75, 93, 86],
"chinese": [63, 90, 85, 70]
}
df = pd.DataFrame(grades)
new_df = df.sort_values(["math"], ascending=True)
print("遞增排序")
print(new_df)
new_df = df.sort_values(["math"], ascending=False)
print("遞減排序")
print(new_df)
如果想要學習更多的Python應用教學,歡迎前往Learn Code With Mike( https://www.learncodewithmike.com/2020/11/python-pandas-dataframe-tutorial.html )網站觀看更多精彩內容。
看更多
3 0 14722 1
你可能感興趣的教室