104學習

104人力銀行 / 恆碩科技股份有限公司 / MES軟體工程師 / 符合度分析
MES軟體工程師 恆碩科技股份有限公司
履歷符合度:
登入計算

性格適合度:

職缺要求技能

未具備

MES

Visual Basic

Visual Basic .net

Visual Studio .net

Base

資料庫程式設計

測驗

流程分析

資料庫管理

已具備

Python

測驗

Github

測驗

PostgreSQL

測驗

tensorflow

測驗

軟體工程

PyTorch

測驗
有已符合的經歷忘了填寫嗎?記得定期 更新履歷

學習推薦

tangangel

14小時前

2026年台灣七大MES系統廠商推薦排名,找數位轉型夥伴看這邊!
2026年的台灣製造業,正處於數位轉型的最關鍵時刻。半導體、電子、機械、汽車組件等產業面臨全球供應鏈重組、勞動力短缺、永續要求與AI技術爆發的挑戰。MES(Manufacturing Execution System,製造執行系統)已不再是可選工具,而是企業提升產能、降低成本、實現智慧工廠的必備基礎。
MES能即時串聯ERP與現場設備,達成生產追蹤、品質控管、設備管理、物料流動與數據分析等功能,幫助工廠從「經驗管理」轉向「數據驅動」。本文根據台灣市場實際導入案例、廠商在地支援能力、技術成熟度(AIoT、數位孿生、雲端部署)、產業適配性與客戶口碑,整理出台灣七大MES系統廠商推薦排名,供製造業主與數位轉型團隊參考。
選型重點提醒:大型企業偏好全球標準與ERP無縫整合;中小企業重視在地快速支援、彈性客製與CP值;高科技業則看重設備聯網(OT/IT整合)與預測維護能力。
一、MES 是什麼?
MES(Manufacturing Execution System,製造執行系統),是介於 ERP 與現場設備(機台、人員、製程)之間的關鍵系統,負責把「計畫中的生產指令」真正落實到工廠現場,並即時回收生產過程中的所有數據,讓管理者看得見、管得動、追得到。
如果你曾經遇過「ERP 看起來一切正常,但現場卻天天救火」,那 MES 幾乎就是為了解決這個問題而存在。
在眾多實際輔導製造業數位轉型的經驗中,MES 的價值從來不只是「系統導入」,而是讓工廠從憑經驗管理,轉為憑數據決策。MES 在現場主要扮演以下幾個關鍵角色:
第一:生產即時監控
MES 會直接串接產線、機台、工站,讓你即時看到每張工單目前做到哪一道製程、良率多少、是否延誤。這件事在沒有 MES 的工廠,往往只能靠人工回報或下班後整理報表,等你看到數據時,問題早就發生完了。
第二:製程與品質控管
MES 不只記錄「有沒有做完」,而是完整留下「怎麼做的」。包含參數設定、作業人員、機台狀態、檢驗結果,全部自動留痕。當客戶追溯不良品、內部要做品質分析時,不再是翻紙本、問老員工,而是系統一查就有。
第三:工單與人機料管理。
MES 能清楚掌握「誰、在什麼時間、用哪台機器、做哪一張工單、用了哪些原料」。這對於多品項、少量多樣的工廠尤其重要,因為錯料、插單、急單,往往就是混亂的開始。
第四:數據即時回饋給管理層。
MES 不是只給現場用,而是把即時生產數據往上回饋,讓主管在辦公室就能看到真實產線狀況,而不是只看到美化後的月報。
簡單說,MES 就像工廠的「即時神經系統」,少了它,ERP 再強,現場依然是黑盒子。
二、如何挑選最適合的MES數位轉型夥伴?
1. 評估自身痛點:是生產透明度不足?品質追溯困難?還是設備稼動率低?
2. 考量整合性:是否需與現有ERP、PLM或IoT平台串接?
3. 重視在地服務:台灣廠商通常在客製化速度與售後反應上更有優勢。
4. 未來性:優先選擇支援AI、邊緣運算、雲端混合部署與數位孿生的方案。
建議步驟:先定義需求 → 邀請2-3家進行現場訪談與Demo → 選定1-2家做POC → 簽約導入並分階段上線。
三、台灣七大MES系統廠商推薦排名
1. 鼎華智能:離散製造龍頭,亞太經驗最豐富
鼎華智能源自台灣鼎新電腦,深耕製造業40餘年,在離散型製造(如電子、機械、汽車組件、PCB、半導體後段)市占領先。鼎華智能專注MES與APS解決方案,累積超過2000家離散企業與200多家半導體客戶,涵蓋台灣、中國與東南亞。
核心優勢:AI融合生產排程、IoT數據中台、數位孿生應用;與ERP高度整合;在地服務網絡完整。適合追求全場景數位轉型的中大型製造業,尤其半導體與精密機械領域。2026年其「雅典娜」工業互聯網平台在AI Agent與預測維護上表現突出。
2. SAP:全球企業標準,ERP整合無敵
SAP ME/MII 是許多台灣上市櫃企業與跨國集團的選擇,尤其已導入SAP ERP的組織。適合大型電子、半導體與高科技製造業。
核心優勢:與S/4HANA無縫整合、即時數據分析強大、全球最佳實務模板豐富;支援複雜供應鏈與多廠區管理。缺點是導入成本與週期較高,適合有堅強IT團隊的大型企業。2026年其雲端與AI強化功能持續領先。
3. 西門子(Siemens Opcenter):自動化與數位孿生專家
西門子憑藉強大的工業自動化背景,在台灣高科技與精密製造市場表現優異。Opcenter MES適合需要深度設備整合與模擬優化的企業。
核心優勢:數位孿生技術成熟、可與Siemens PLC/自動化設備完美結合;邊緣運算與高頻數據處理能力強;適合半導體、面板、汽車等追求零缺陷與預測性維護的產業。2026年在工業4.0生態系中仍具領先地位。
4. 羅克韋爾自動化(Rockwell Automation):離散製造與效能優化強項
Rockwell在台灣市場成長快速,尤其半導體供應鏈、製藥與傳統產業轉型案。FactoryTalk MES適合注重OEE(整體設備效能)與能源管理的企業。
核心優勢:PLC與MES整合度高、AI節能應用實績亮眼(如鋼鐵、水泥等產業大幅降低用電);在地團隊支援積極。2026年受惠製造業回流與節能趨勢,台灣業績表現突出。
5 . 台塑網科技:台塑集團實戰智慧,穩定可靠
台塑網是台塑企業的數位轉型核心單位,MES系統來自集團內部大量實戰經驗,特別適合塑膠、化工、機械加工等流程與離散混合產業。
核心優勢:系統穩定性高、成本相對親民;擅長少量多樣生產、排程優化與品質追溯;結合集團大數據分析能力。適合追求務實轉型、已有台塑供應鏈關係的台灣製造業。
6. Honeywell:流程產業與生命科學MES專家,Forge平台AIoT領先
Honeywell在台灣以漢威聯合股份有限公司為在地據點,全球Process Solutions事業部提供專業智能生產管理執行系統(MES),廣泛應用於石化、煉油、製藥、生命科學、礦業等流程型產業。近年推出Manufacturing Excellence Platform(MXP)與Forge工業物聯網平台,在台灣舉辦多場AIoT智慧製造安全與永續研討會,展現強大在地能量。
7. 資通電腦 ciMes:台灣本土首選,支援最到位
資通電腦是台灣資深上市軟體公司,ciMes經歷上百家台灣企業實戰淬鍊,獲台灣精品獎、Gartner建議台灣MES廠商、微軟ISV認證等多項肯定。特別適合金屬加工、汽車零件、電子組裝、石英元件、電動車相關產業。
四、什麼樣的企業最需要 MES?(不是只有大型工廠才要)
很多中小企業會以為:「我們規模不大,應該還用不到 MES。」
但筆者的實務經驗剛好相反,越是人力吃緊、產品複雜度高的工廠,越需要 MES。
以下幾種狀況,只要你點頭超過兩項,MES 幾乎是遲早要導入的:
1. 生產品項多、客製化高,常常插單、改單
2. 品質問題難以追溯,只能靠經驗判斷
3. 產線資訊分散在 Excel、紙本、LINE 群
4. 主管每天被現場問題追著跑,卻看不到全貌
5. 想導入自動化、智慧製造,但沒有即時數據基礎
MES 並不是「為了跟風智慧製造而買」,而是當管理複雜度已經超過人腦與人工流程能承受的時候,唯一可行的解法。
五、MES 導入會卡關在哪?先講結論給決策者聽
(一)最致命的卡關點:流程沒定義,就急著上系統
MES 導入真正卡關的,從來不是系統功能,而是「組織準備度、流程成熟度,以及對現場真實狀況的誤判」。
筆者實際參與過多起 MES 導入與重整專案,失敗或延宕的原因,幾乎都不是技術問題,而是「人、流程、期待」三件事沒有先對齊。下面直接用實務角度,帶你看清 MES 最常卡關的關鍵點。
很多企業在導入 MES 時,第一步就走錯方向,急著問:「這套 MES 功能多不多?能不能客製?」
但筆者必須很直接地說一句重話:流程不清楚,MES 只會把混亂自動化。
實務上最常見的狀況包括:
1. 同一個產品,不同班別做法不一樣
2. 製程條件寫在老師傅腦袋裡,而不是文件
3. 發生異常時,每個人各自處理,沒有標準回報流程
在這種情況下導入 MES,系統商只能「配合現況硬做」,結果就是:
1. 表面看起來有上線
2. 實際數據無法信任
3. 現場人員開始亂填、跳過流程
如果原本流程就不穩定,MES 只會讓問題被看得更清楚,但不會自動幫你解決。
(二)現場抗拒,是 MES 導入最容易被低估的風險
在簡報裡,MES 永遠很美;在產線上,MES 常常被嫌麻煩。
筆者觀察過不少案例,導入卡關的真正原因,其實是現場人員心理過不了那一關。
常聽到的聲音包括:
-「以前這樣做也沒問題,為什麼現在要多填系統?」
-「這是不是在監控我們的效率?」
-「產線已經很忙了,還要操作電腦?」
如果企業只用「管理命令」推 MES,而沒有解釋:
1. MES 為什麼對現場有幫助
2. 它能減少哪些重工、追責、誤會
3. 哪些數據是用來改善流程,而不是找人麻煩
那結果通常只有一個:系統在跑,但資料是假的。
成功的 MES 導入,一定會把「現場使用體驗」放在第一順位,而不是只滿足管理報表。
(三)資料來源不乾淨,MES 只會產出錯誤洞察
MES 很吃資料品質,但這一點常被企業嚴重低估。
筆者看過不少工廠,問題不是 MES 不準,而是:
1. 機台訊號沒有標準
2. 人工輸入沒有驗證機制
3. 不同系統的資料定義不一致
例如:
1. 「停機」在 A 部門是換線,在 B 部門是異常
2. 生產數量到底是「良品數」還是「投料數」?
當這些基本定義沒有統一,MES 再怎麼即時,產出的分析結果都只是在精準地算錯誤。
MES 導入前,一定要先做一件很枯燥、但極關鍵的事:
就是資料定義與欄位標準化。這一步沒做,後面全部都是假進步。
(四)把 MES 當成一次性專案,而不是持續優化工程
很多企業在導入 MES 時,心態是:「這次上線就一次到位。」
但現實是,MES 是一條長期路線,不是一次交付。
常見錯誤包括:
1. 導入後沒人持續維護流程
2. 報表一堆,卻沒人真的拿來開會決策
3. 現場問題改了,系統卻沒同步調整
4. MES 真正的價值,不在「上線那一天」,而在於:
5. 能不能每季優化一次製程
6. 能不能用數據調整排程與人力
7. 能不能逐步往智慧製造前進
如果沒有專責團隊或顧問角色持續優化,MES 很容易變成「看起來很先進的電子看板」。
總結論:
台灣製造業的韌性來自不斷升級。2026年,選擇對的MES夥伴,不僅能立即看到產效提升,更能為未來AI工廠與智慧供應鏈打下堅實基礎。
文章參考資料:
看更多
1 0 12 1
104學習

產品

01/31 12:02

轉職首選!3 週從零到上手的數據分析師養成營 —— 104人力銀行 × 104學習 × 緯育 TibaMe 聯合推出
想跨入高薪、有前景,又能左右商業決策的數據分析師職涯,但擔心自己沒有程式背景、時間不夠嗎?
這堂【數據分析師學習營】或許是你理想的起點。
✨ 首次跨界合作,更強大資源整合✨
這次由 104學習精靈 首度攜手 緯育 TibaMe 聯合打造。
⚡104人力銀行 × 104學習精靈:深耕職涯數據多年,最了解台灣企業用人需求,課程更貼近市場實際職缺。
⚡緯育 TibaMe:累積多年產業培訓經驗,專注於 IT、數據、AI 等熱門技能轉職養成,培訓模式完整,輔導成效有口碑。
這樣的合作,讓學員享有真實的培訓經驗,學習效果與轉職落地率都更具保障。
課程亮點一次看
🔥3 週密集實戰:短短三週密集訓練,快速掌握職場必備技能,不必耗費半年、一年時間啃課表。
🔥零基礎設計:無需工程背景,也不用寫程式,由淺入深帶你學會資料庫查詢(SQL)與數據視覺化工具 Power BI。
🔥實戰作品累績履歷實力:課程設計強調實務操作,結訓不僅懂工具,更手上有完成的作品,讓履歷直接升級。
🔥專屬平台與支援:透過共學社群與專業助教協助,學習不再孤單。
為什麼你該報名?
🟢快速起步,快速看成果:三週聚焦提速進展,是在職或時間有限者的最佳選擇。
🟢具備市場需求核心技能:SQL 與 Power BI,完全符合企業當前的數據分析需求。
🟢履歷實力落地具體化:實作作品比起只學理論更能打動雇主眼光。
🟢104 × 緯育 TibaMe 強強聯手:把資源與專業結合,讓學習不只停留在課程,而是直通「就業」與「轉職」。
【名額倒數中,不要錯過現正優惠】
看更多
1 0 8429 1
職涯診所

01/29 00:05

0 0 727 0
2026 開發者的身價保衛戰:在 Vibe Coding 浪潮中,拿回你的「定義權」
最近與許多技術團隊負責人和企業主聊天,大家不約而同提到一個現象:「開發軟體的門檻好像消失了,但系統崩潰的風險卻變高了。」
隨著前特斯拉 AI 主管 Andrej Karpathy 提出的 Vibe Coding(氛圍編程) 成為主流,我看到很多非技術背景的朋友,靠著與 AI 聊天就能生出亮眼的 App 介面;我也看到許多工程師開發速度提升了數倍,卻在「上線後」陷入了前所未有的技術債深淵。
當 Vibe Coding 已經普及,隨之而來的卻是嚴重的「開發斷層」。當開發者只靠氛圍、不靠邏輯時,系統將變得混亂無序。身為技術顧問,我想分享一個關於 2026 年開發範式的核心觀察:
「當程式碼變得廉價,你的『定義權』就是你的身價。」
__
為什麼「感覺(Vibe)」很好,系統卻會崩塌?
AI 可以根據你的「氛圍」快速產出代碼,但它無法替你思考複雜的商業邏輯,更無法預見潛在的安全威脅。如果缺乏結構與驗證,Vibe 出來的結果往往是:
* 需求斷層: AI 寫出的功能外表亮眼,卻與實際業務場景完全脫節。
* 安全性漏洞: AI 為了追求功能實現,常產出帶有 SQL Injection、跨站腳本 (XSS) 或缺乏權限驗證的程式碼。這些隱蔽的資安破口,在上線後將成為駭客進出的後門。
* 邏輯黑盒: 沒有人敢改 AI 寫的 Code,因為沒人知道邏輯邊界在哪。
* 擴充災難: 隨意生成的代碼導致耦合度爆炸,系統最終難逃「砍掉重練」的命運。
要駕馭這場技術海嘯,我們需要一套更人性化、也更嚴謹的**「數位防禦思維」**。
__
從 User Story 出發:找回軟體的「靈魂」
很多失敗的 AI 專案,問題都出在指令(Prompt)太過破碎。在 AI 時代,我們必須回歸本質,從 User Story (使用者故事) 開始:
「身為 [角色],我想要 [功能],以便於 [獲得價值]。」
這不只是文件,這是你與 AI 溝通的底層邏輯。如果你無法清晰定義需求與價值,AI 給你的只會是一堆華麗卻無用的廢碼。
__
建立 AI 時代的「鐵三角」品質防線
為了確保 AI 產出的結果不只是「看起來會動」,開發團隊必須導入以下框架,構築穩固的防線:
1. BDD (行為驅動開發):將需求變成「活的規格」
AI 容易產生幻覺,我們不能只給任務,要給「場景」。透過 BDD 的 Given/When/Then 格式描述行為,讓 AI 清楚知道「什麼樣的結果才算成功」,將開發轉變為**「目標導向工程」**。
2. TDD (測試驅動開發):建立不可穿透的「品質護欄」
在叫 AI 實作功能前,先叫它寫測試單元。TDD 是對付 AI 不確定性最強大的武器。透過先行的測試案例(Test Cases),強迫 AI 產出的程式碼必須通過斷言(Assertion),杜絕技術債。
3. DDD (領域驅動設計):建立邏輯的「護城河」
AI 懂語法但不懂你的生意。我們需要 DDD 定義 Bounded Context (邊界上下文),建立一套**「通用語言」**。這能確保複雜系統在規模化擴張時,邏輯依然清晰且不崩壞。
4. SDD (規格驅動開發):構築穩定「鋼骨」
在 ASP.NET Core 框架下,我們利用強型別與依賴注入 (DI),將上述行為轉化為不可違背的 Interface (介面)。這份「規格」就是 AI 必須遵守的施工圖,確保系統具備企業級的穩定度。
__
從「開發者」到「架構師」:定義未來的規則
2026 年,開發者的角色正經歷劇烈重塑。我們不再需要更多「只會寫 Code 的工程師」,而是需要更多**「具備領域洞察力、能編寫高品質規格、並能驗證 AI 品質的架構師」**。
__
這也是我在 X School 規劃 【Vibe Coding AI 工程師養成班】 的初衷。我們不走傳統的語法教學,而是教你:
* 從 User Story 挖掘核心商業價值。
* 透過 DDD 建立健壯的系統模型。
* 利用 SDD、BDD 與 TDD 建立 AI 無法穿透的品質護欄。
* 在 ASP.NET Core 的架構下,實現真正的**「精準開發」**。
這是一場關於「主導權」的訓練。在 AI 淹沒平庸之前,先讓自己成為規則的制定者。
如果你感覺目前的 AI 開發流程讓你焦慮,或許缺的不是更強的模型,而是一套能駕馭 AI 的開發方法論。
【Vibe Coding 全端架構師養成:ASP.NET Core × AI LLM 企業級實戰】 現在就加入,成為定義規則的人。
想了解更多課程資訊請詳見以下連結👇
看更多
0 0 2266 0
別讓 Vibe coding產生的程式碼,成為你系統中的定時炸彈!
Vibe coding讓每個人都能做MVP,也加快了系統開發的速度,但你的系統變穩了嗎?
許多人依賴 AI 產出大量程式碼,卻在進入企業專案後引發災難:
* 技術債爆炸: 缺乏 Clean Architecture 分層,AI 產出的程式碼散落在各處,改不動也測不了。
* 資安門戶大開: AI 不懂 OWASP Top 10,直接套用範例導致 SQL Injection 或 JWT 實作錯誤。
* 併發即當機: 缺乏對 Transaction Scope 與並行控制(鎖機制)的理解,資料一多就噴錯。
🚀 Vibe Coding 全端架構師養成班:教你如何「主導」AI,而非被 AI 誤導。
我們不只教如何用 Vibe Coding做出玩具專案,
我們教的是**「能真正落地的企業級應用系統」**:
🛡️ 安全防禦: 實作 2FA、RBAC 授權與 CVE 掃描,守住企業底線。
🏗️ 結構嚴謹: 從 Act I 的 Clean Architecture 到 Act II 的 DDD 概念 Service Layer。
📈 壓力測試: 使用 JMeter/k6 驗證高併發場景,確保系統不是紙糊的。
這不是一門Vibe Coding課,這是一場關於「系統穩定與安全性」的修煉。
🔗 拒絕技術債,成為真正能扛專案的架構師:
看更多
2 0 2623 0