Mike的Python學院

資料整理、程式語言、資料清理、Kaggle、Python、資料分析、PYTHON資料分析、軟體程式設計、Pandas、統計分析、機器學習

Mike Ku

Learn Code With Mike品牌創辦人

2022/01/20

教你用Pandas套件清理資料中的常見資料型態問題(下)

想要實作資料分析,讀取資料是第一步所要執行的動作,而如果沒有正確的進行資料前處理(Data Preprocessing),就會影響最後分析結果的準確性及可靠性。
本文就先針對「資料型態」,來和大家分享如何有效找出髒資料(Dirty Data),並且利用Pandas套件來進行資料處理或清理,避免髒資料(Dirty Data)導致分析的副作用。
Q: Pandas類別資料型態(category)處理
在實作機器學習或分類資料的時候,有時會以數字來分別表示不同類別的資料。
同樣以Kaggle網站的ASUS筆電資料集( https://www.kaggle.com/bhageshcodebeast/asus-laptops-2020-jun )為例,為了進行示範,Mike將「Category筆電類別欄位」利用以下三個數字表示:
0-其他
1-Premium
2-Platinum
Pandas讀取資料集後,如下範例:
import pandas as pd
df = pd.read_csv('AsusLaptops.csv')
print(df)
而各欄位的資料型態,如下範例:
import pandas as pd
df = pd.read_csv('AsusLaptops.csv')
print(df.info())
可以看到Pandas套件判定「Category筆電類別欄位」為int64(整數)型態,當利用Pandas套件的describe()方法(Method)進行摘要性統計的時候,就會看到數字型態的統計結果,如下範例:
import pandas as pd
df = pd.read_csv('AsusLaptops.csv')
print(df['Category'].describe())
但事實上,「Category筆電類別欄位」為類別資料型態(category),如果沒有將欄位進行轉型,就有可能誤導後續的操作或統計。
解決方法,可以使用Pandas套件的astype()方法(Method),將「Category筆電類別欄位」轉型為類別型態(category),這時候,再透過describe()方法(Method)來查看摘要性統計的時候,就會是類別型態(category)的統計結果,如下範例:
import pandas as pd
df = pd.read_csv('AsusLaptops.csv')
df['Category'] = df['Category'].astype('category') #轉型
print(df['Category'].describe())
以上就是在進行資料分析的過程中,常見的資料型態問題,本文和大家分享了利用Pandas套件的info()方法(Method),來查看各欄位的資料型態是否與需求相符,如果其中含有髒資料(Dirty Data),可以使用strip()方法(Method)進行資料清理,以及透過astype()方法(Method)轉型為正確的資料型態。
如果想要學習更多的Python應用教學,歡迎前往Learn Code With Mike(https://www.learncodewithmike.com/2021/12/processing-data-type-with-pandas.html
)網站觀看更多精彩內容。
2 0 708 0