Mike的Python學院

資料分析、資料整理、邏輯分析、PYTHON資料分析、Python、資料清理、Pandas

Mike Ku

Learn Code With Mike品牌創辦人

2022/01/21

3個實用的Pandas套件清理重複資料教學

本文以Kaggle網站的Amazon 2009-2019年Top50暢銷書資料集( https://www.kaggle.com/sootersaalu/amazon-top-50-bestselling-books-2009-2019 )為例,教大家如何查找及清理資料集的重複資料,提升資料的品質。
Q: Pandas duplicated()查找重複資料
想要使用Pandas套件查找資料集的重複資料,利用duplicated()方法(Method)可以得到每筆資料的重複狀態,True代表重複,False為沒重複,如下範例:
import pandas as pd
df = pd.read_csv('bestsellers with categories.csv')
print(df.duplicated())
接著,透過Pandas套件的括號[]語法即可檢視重複資料的各欄位資料,如下範例:
df = pd.read_csv('bestsellers with categories.csv')
print(df[df.duplicated()])
Pandas套件的duplicated()方法(Method)除了能夠查找所有欄位資料完全一樣的重複資料外,也提供了以下兩個關鍵字參數,來客製化查找的方式:
1. subset-查找特定欄位的重複資料
2. keep-保留第一筆(first)、最後一筆(last)或全部(False)的重複資料
如下範例:
df = pd.read_csv('bestsellers with categories.csv')
column_names = ['Name', 'Author', 'Year', 'Genre']
df = df[df.duplicated(subset=column_names, keep=False)]
print(df)
以上範例即是查找Name(書名)、Author(作者)、Year(出版年)及Genre(類型)四個欄位都一樣的重複資料,並且全部保留。
Q: Pandas drop_duplicates()刪除重複資料
從資料集裡找到重複的資料後,接下來,最常見的就是進行刪除或群組處理。
而要刪除完全一樣的重複資料,可以利用Pandas套件的drop_duplicates()方法(Method),如下範例:
df = pd.read_csv('bestsellers with categories.csv')
df.drop_duplicates(inplace=True)
其中,inplace關鍵字參數代表直接從現有資料集中刪除重複資料。
另外,要刪除特定欄位重複的資料,同樣可以透過subset及keep關鍵字參數來達成,如下範例:
df = pd.read_csv('bestsellers with categories.csv')
column_names = ['Name', 'Author', 'Year', 'Genre']
df.drop_duplicates(subset=column_names, keep='first', inplace=True)
Q: Pandas groupby()、agg()群組重複資料
除了可以利用Pandas套件的drop_duplicates()方法(Method)刪除重複資料外,有時基於商業邏輯,可以透過群組的方式解決重複資料。
這時候,就可以利用Pandas套件的groupby()方法(Method)群組相同資料的欄位,以及agg()方法(Method),統計運算剩餘的不同資料欄位,達到合併重複資料成一筆的效果,如下範例:
df = pd.read_csv('bestsellers with categories.csv')
column_names = ['Name', 'Author', 'Year', 'Genre']
summeries = {'User Rating': 'mean', 'Reviews': 'sum', 'Price': 'mean'}
df = df.groupby(by=column_names).agg(summeries).reset_index()
print(df)
如果想要學習更多的Python應用教學,歡迎前往Learn Code With Mike(https://www.learncodewithmike.com/2022/01/pandas-drop-duplicate-data.html
)網站觀看更多精彩內容。
3 0 1139 0