104學習精靈

全部 課程 貼文 教室 證照 影片
演算法相關的課程 (25)
從工作推薦課程
Google Cloud 學程
2024 Google 數位人才探索計畫針對不同背景的台灣人才,提供免費的數位技能培訓,除了包含數位行銷及雲端工程兩大領域,今年更特別新增 AI 應用及開發課程。透過完整學習路徑規劃,無論你是學生或考慮轉換跑道的在職者,都能在短時間內具備相關知識! 現在就加入 Google 數位人才探索計畫,跟上 AI 趨勢、鞏固數位能力吧! 計畫亮點: ★因應趨勢增設AI課程,全方位強化職能! ★取得Google結書,提升職場競爭力! ★完整學習路徑規劃,輕鬆學習無負擔! 學程簡介: 完成學程,即可獲得相應的數位人才探索計畫結業證書,增加職涯無限可能! 【Google Cloud 學程】Cloud Study Jam season 5 走在數位時代的尖端,越來越多事物都僅存於雲端、網路上,系統串接、訊息流通的優化與解決方案成為了不可或缺的硬實力。 今年更結合最新生成式Al開發內容,是你不容錯過的紮實技術課程! 1. 線上自學課程 Google Cloud Computing Foundations 課程 l Cloud Computing Fundamentals l Infrastructure in Google Cloud l Networking & Security in Google Cloud l Data, ML, and AI in Google Cloud 生成式AI開發者入門課程 l Introduction to Generative Al l Introduction to Large Language Models l Introduction to Responsible Al l Introduction to Generative AI Studio l Introduction to Image Generation l Generative AI Explorer - Vertex Al l Integrating Applications with Gemini 1.0 Pro on Google Cloud l 使用PaLM進行提示設計 l 使用Model Garden探索及評估模型 2. 總整課程 l Google Cloud 總整課程
Google
人工智慧-Python與資料科學
這是一門有別於坊間的AI數位課程,不僅有清楚的觀念說明也有詳細的程式解說。教你Python程式並瞭解如何實際進行資料處理。 本課程以「程式打底」為目標,教授Python語言及以Numpy、Pandas、Matplotlib進行資料處理與分析。 學習目標 【Python與資料科學】 1. 能快速熟悉Python語言的核心與Python常用的資料結構 2. 學會運用資料科學常用套件-Numpy、pandas、matplotlib來處理、分析與圖表化資料 3. 機器學習的設計方法與術語-從迴歸(Regression)方程式認識機器學習的基本精神 4. 能不使用任何工具套件,以Python實作迴歸方程式 ※ 課程適用經濟部iPAS巨量資料分析師/機器學習工程師能力鑑定考試準備 章節架構 ►Python 簡介 ►變數與動態資料型別 ►運算式 ►序列資料結構- list, tuple, range ►流程控制 ►更多資料結構-set, frozenset, dict, byte, bytearray ►函數 ►變數命名空間 ►類別設計 ►例外處理 ►模組與套件 ►輸入輸出與檔案處理(txt,csv,JSON, pickle) ► 其他(https urlib、beautifulshop,…) ► 附錄: Anaconda Windows/Linux安裝與使用 ►conda 套件管理 ►conda 虛擬環境 ►ipython interpreter ►jupyter notebook ►資料矩陣運算使用Numpy ►資料匯入匯出使用Pandas ►繪圖與製表使用Matplotlib ►機器學習概念 ►最佳化演算法: Gradient Descent ►手刻Gradient Descent演算法 ►手刻線性迴歸 ►手刻線性迴歸作(矩陣版)
艾鍗學院
人工智慧-機器學習
這是一門有別於坊間的AI數位課程,不僅有清楚的觀念說明也有詳細的程式解說。教你機器學習的專業術語與觀念,並能了解其背後的意義及數學意義。瞭解機器學習的各種演算法並且能以進行範例實作。 將介紹機器學習的各類演算法並以Scikit learn進行手把手實作教學。對於同類型演算法,將以同一種資料集讓學員能比較演算法之間的差異及各式參數對模型效能的影響。 學習目標 【機器學習】 1. 了解機器學習的概念 2. 學會Regression、Classification、Clustering 機器學習相關演算法基本原理 3. 學會用Scikit-learn 進行如Logistic Regression、SVM、Decision Tree、Random Forest等等Machine Learning 的實作。 4. 學會強化式學習及其實作 ※ 課程適用經濟部iPAS巨量資料分析師/機器學習工程師能力鑑定考試準備
艾鍗學院
AI邊緣運算實作TensorFlowLite for MCU
TensorFlow Lite for MCU正是專為邊緣裝置設計的TensorFlow模型預測框架,是TensorFlow的精簡版本,讓開發者可以在物聯網與嵌入式裝置中部署微型機器學習模型。 本課程將教授AI模型如何部署於微控制器,包含模型訓練、模型最佳化以及TensorFlow Lite框架的程式開發等。在實作上搭配Sparkfun edge board (ARM cortex M4),說明如何以TensorFlow Lite 在微控制器上開發人工智慧專案。課程安排的三個專案實作,跨足AI在圖像、語音、感測訊號的三大應用領域,包含連續圖像輸入的人臉偵測、連續語音訊號輸入的語音識別、連續感測訊號輸入的姿態識別。在課程中也會特別解說MCU是如何處理這些讀入的連續輸入資料(包含圖像、語音、感測訊號)及模型輸出後的處理,才能讓AI系統更加穩健。 ✔搭配硬體,學習才有感 透過 SparkFun Edge 硬體裝置,實戰開發 TinyML 的AI應用。 ✔實戰三大AI專案,還提供程式源碼 進行微控制器上面的AI開發專案,包含人臉偵測、語音識別、姿態識別三大專案。 ✔老師傅才能讓你快速抓到開發的眉角 汲取業師的實務開發經驗,讓你少走冤枉路。縮短專案開發時程,就是省錢。 【學習目標】 1. 了解 Edge AI 的應用、限制與挑戰。 2. 了解 Tensorflow Lite for MCU 的軟體程式架構與開發流程。 3. 了解最佳化 ML 模型的方法:量化、剪枝、壓縮原理。 4. 了解 AI模型如何部署於微控制器,包含開發環境建立、模型訓練、模型最佳化等。 5. 了解 MCU該如何處理這些讀入的連續輸入資料(包含圖像、語音、感測訊號)及模型模型輸出後的處理等。 【章節架構】  Edge AI 與MCU起手式 1. 簡介MCU世界的邊緣運算 2. Edge AI(TinyML)的開發流程 3. SparkFun Edge Board硬體介紹 4. SparkFun Edge SDK架構說明 5. 建立編譯開發環境 6. 動手作 1) -建置第一個hello word專案 2) -LED 跑馬燈、按鍵讀取 3) -程式燒錄流程  Tensorflow Lite for MCU實作開發 1. AI於微控制器的開發流程說明 2. 優化: 模型量化、運算子優化 3. TF Lite FlatBuffer 格式 4. Tensorflow Lite for MCU程式框架說明 5. 專案實作 1) -揮動姿態識別(配合3軸加速器) 2) -偵測有無人臉(配合camera sensor) 3) -語音字詞識別(配合麥克風)
艾鍗學院