104學習精靈

全部 課程 貼文 教室 證照 影片
爬蟲相關的課程 (15)
從工作推薦課程
零基礎成為Python金融數據分析師|金融資訊爬蟲X視覺化應用
您將能學到 課程單元從 Python 程式基礎開始,包含變數、資料型態、流程控制、函式、例外處理等 金融主題的網路爬蟲程式教學,製作Python爬蟲工具能夠自動抓取網路上豐富的金融資訊 專案實作教學,開發爬蟲程式抓取股市、匯率、利率、大盤等資訊 資料庫基礎教學,將抓下來的資訊儲存至資料庫與檔案當中,往後能夠有效的利用 資料視覺化教學,使用 Plotly套件繪製技術分析圖,包含K線和各技術指標 抄底工具程式實作,整合以上所學,透過成交量、技術指標、融資餘額資訊分析抄底時機 課程介紹 這堂 「零基礎成為Python金融數據分析師|金融資訊爬蟲X視覺化應用」課程,主要分為五個主題 + 一個HTML與CSS補充章節。 將從 Python 程式教學入門開始,搭配金融資訊相關的程式範例實作,接著學習如何使用SQL語法並有效抓取數據,並善用Pandas、Plotly視覺化套件,製作出K線、成交量、移動平均線、RSI 指標等圖表,最後進行抄底程式工具實作。 此外,有鑑於 Yahoo 更新網站後,整個 HTML 的結構完全不同,因此課程中特別新增了 Yahoo 股市爬蟲程式教材,並提供整堂課完整的程式碼範例,零基礎者也能輕易上手。 金融爬蟲流程簡介 課程中將學習到完整金融爬蟲方式,從分析網頁架構到儲存金融數據,最後資訊視覺化金融資訊。讓您在第一時間以最聰明便捷的途徑簡化投資歷程, 掌握投資先機,投報率即刻到手! → 確認資料來源 (臺灣證券交易所),分析網頁的架構,要抓的資料所在位置 → 透過爬蟲程式解析網頁內容,清理資料,從中抓取所需的數據 (Pandas) → 將整理的數據儲存至資料庫中 (SQL) → 未來就可以從資料庫中提取資料並繪製圖表 (Plotly) 200%解鎖項目 「講座:網路資源視覺化與Line Notify整合實作」 在這堂解鎖課程中,會實作讓程式能夠一覽股市資料的即時通知工具。將金融資訊爬蟲下來後,使用Plotly套件繪製成一張張簡潔的視覺化資訊圖表,並透過 LINE Notify來傳送給使用者。 400%解鎖項目 「講座:網路資源視覺化與Excel整合實作」 適合對象 零程式基礎,想踏入金融科技領域的人 對股票投資有經驗,想打造屬於自己可視覺化股票投資工具的投資人 對學習整合金融網路爬蟲、資料庫和資訊視覺化有興趣的工程師 教師介紹 Kadin Chung 鍾榮達 目前在公司負責系統分析與程式設計,同時也在做線上課程講師。 碩士畢業之後在外商系統整合服務公司上班多年,到自己設立軟體公司,第一個合作售出的系統是一套網路管理系統,可以幫助客戶配置,維護和測試數千台思科網路設備。 除此之外,Kadin在大型項目方面經驗豐富,例如馬拉松線上報名系統,車行租賃管理系統等。 在Kadin創業的過程中不斷地促使自己學習新的技能,並且知道什麼是「學習新技能」最有效的方法,他樂於分享一切所學的知識和實務經驗,也因為這份樂情,帶領 Kadin 來到 MasterTalks ,他將會透過高品質且有效率的方式分享他所學的一切技術和知識! 課程大綱 一、Python 程式基礎 1. 程式開發環境建立 2. 認識變數和資料型態 3. 流程控制 4. 常用的容器型態 5. 函式、模組和套件 6. 檔案的讀取與寫入 7. 例外處理 8. try-except 類別與物件 二、Python 爬蟲程式應用 1. 認識網路爬蟲 2. 網路爬蟲相關技術 3. 認識 HTML 4. 認識 Chrome開發人員工具 5. BeautifulSoup 教學 1|實作案例:Yahoo 股市爬蟲 6. BeautifulSoup 教學 2|實作案例:Google 股市爬蟲 7. Selenium 教學 1|實作案例:告牌匯率爬蟲 8. Selenium 教學 2|實作案例:匯率走勢爬蟲 三、數據的儲存:SQL圖表 1. CSV檔案讀取與寫入|銀行利率爬蟲 2. 資料庫基礎教學 1 3. 資料庫基礎教學 2|股票清單爬蟲 四、數據處理、資料分析與視覺化 1. Pandas 基礎教學 1 2. Pandas 基礎教學 2|股票日成交資訊 3. Plotly 基礎介紹 4. K線圖製作 5. 整合K線與成交量|子圖的製作 6. 移動平均線圖製作 7. RSI 指標圖製作 五、抄底工具程式實作 1. 台灣證券交易所|大盤指數爬蟲 2. 爬蟲抓取每日大盤【歷史資料】與資料庫整合實作 3. 爬蟲抓取每日大盤【成交資訊】與資料庫整合實作 4. 抄底工具:大盤K線與成交量圖製作 (含圖表週期轉換) 5. 抄底工具:大盤KD指標技術分析圖製作 6. 爬蟲抓取每日大盤【融資餘額】與資料庫整合實作 7. 抄底工具:大盤融資餘額圖製作 補充章節:HTML & CSS 基礎 1. HTML 基本介紹 2. 下載前端開發工具 3. HTML 結構 4. HTML 內容 5. HTML 圖片 6. HTML 超連結 7. 基本CSS介紹 8. 設定文字樣式 9. 設定顏色 10. 使用 Class 與 ID 11. CSS 區塊模型 12. 網頁布局 13. 美化網站 14. 定位方式 解鎖內容 講座1:LINE視覺化圖片即時通知 講座2:網路資源視覺化與Excel整合實作 講座3:Python爬蟲與PDF檔案下載整合實作 課前準備 一台能夠上網的電腦或筆電 課程中所使用到的軟體都是免費的,都會在課程中說明
Mastertalks
Python全方位期貨課程 - 從基礎、爬蟲、回測、LINE提醒到AI應用
課程範例展示 完整分析期貨策略風險與報酬,並快速優雅的產出精美圖表。(圖上報酬為模擬示意) 利用回測框架演算期貨策略最適參數及其對應的報酬、MDD及Sharpe Ratio,迅速算出策略最適合參數。 (下欄位與參數數值為模擬,實際值以課程為主) 利用手邊現有資料,開發出市場警示、提醒程式,利用排程自動執行並透過Line Notify服務通知。 除基本的介紹與機器學習模型應用,我們使用一些深度學習及強化學習模型預測期貨價格、漲跌、交易等。(強化學習將於500%解鎖章節教授) 課程說明 您最需要的Python期貨程式交易,都盡在此課! 使用Python做出程式交易全方位的應用,讓你在程式交易的領域面對何種需求都能輕鬆應對,尤其是針對期貨保證金交易的模式,仍然能得心應手。當你學會期貨程式的撰寫之後,就算轉戰股票市場你也會覺得相當輕鬆,反之由股票交易程式轉戰期貨交易程式時常讓人手足無措。 (本課程包含三堂少量的用於股票的應用,因考量到台股高權值股對於台指的重大影響,因此在一些市場偵測的章節會有部分股票應用) 您是否有以下疑問? 還在人工看技術指標評估自己的策略? AI看起來很高深的樣子,完全不敢接觸 想出了好策略或是好的輔助指標卻不知道如何做成服務 市面上大多數是股票課程,課程偏少,網路上資源也較少 1.學會用程式,幾秒鐘即可獲得全面的策略分析! 許多投資者仍然是看著手機APP與技術指標來驗證自己的策略,這樣不僅速度慢,而且不全面。許多人人工驗證了其中一年就確信了自己的策略可行,實際操作時虧損慘重。如果你懂了程式,十年的資料可以在數秒鐘就回測完成,並且透過套件可以獲得非常全面的策略分析,我們會帶著你應用backtrader回測框架快速驗證期貨策略。 2.強大的AI模型,就算是程式小白也可以應用! AI確實是一門非常學術且具備高門檻的領域,但你我可能都並非是走研究學術路線,有了許多巨人替大家開發許多好用強大的AI模型,我們可以很輕易地呼叫這些強大的模型去學習自己的目標,應用並不困難。在本課程中我們將會示範機器學習(Machine Learning)與深度學習(Deep Learning)如何快速簡易的應用在期貨市場,並於解鎖課程中加入強化學習(Reinforcement Learning)的應用。 3. 運用程式進行盤中檢測 當你有好策略或是好的市場掃描程式,卻不知道如何做成服務嗎? 我們會教你如何使用windows排程自動執行你的程式,並讓程式透過Line Notify很簡單的發送Line訊息給你的使用者。時刻監控市場,並達到及時提醒。 4. 少見的全方位期貨課程 是的,不僅是課程,網路上的資源期貨也是偏少。股票的受眾較廣,且程式設計上較為容易,但期貨為保證金交易模式,許多程式設計或是回測框架這部分都會顯得比較複雜,本課程會點出一些關鍵的要點,讓你掌握期貨這方面的程式設計。 這堂課適合誰 苦於人工驗證交易策略,想要高速回測期貨策略 對期貨交易軟體感到無法滿足需求,想要高度自由化 對於Python於期貨市場的應用有高度興趣的初學者 對於爬蟲感到陌生,尤其是動態網頁更是不知所措 有良好的想法,但苦於不知道如何自動化並作成簡單的服務 想要生成專業又漂亮的策略回測結果圖表,卻不知從何下手 對於AI模型無基礎,但又想要嘗試看看,體驗模型的效果 教師介紹 張峮瑋 Arleigh Chang 黃仕勳 Ryan Huang 【老師的話】 大家好,我是《Python全方位期貨課程》的老師峮瑋(Arleigh)。 我曾經待過野村投信(NOMURA),也曾在東吳自然語言處理實驗室研究過模型與金融市場的議題 現在則替私人操盤手撰寫交易程式, 以Python為主,範圍包含程式交易、策略回測、AI應用於市場、資料採集、市場監測機器人等。 這些範疇正是我在課程中想要教給你的,我會將現在的工作環境會使用到的技術,在課程中透過實戰的方式讓你融會貫通。 歡迎大家一起加入這門線上課程!有任何問題歡迎提問,我會親自回覆。 【出版書籍】 - 著有《Python金融市場賺錢聖經》,曾榮登多個平台新書暢銷榜 【學歷】 - 就讀臺科大資管所,研究 AI 應用於金融交易市場 - 畢業於臺科大資工系 輔系財金系 【工作資歷】 - 現任野村投信(NOMURA) IT部門實習生 - 臺科大資工系資料探勘與社群網路分析實驗室成員 - 曾任臺科大 資管所行動計算與資料探勘實驗室成員 - 曾任程式語言家教,協助多位無程式經驗學生從0開始 - 多項AI產學合作經驗,涵蓋深度學習、自然語言處理、社群網路分析 - 曾任 IOH 開發開放個人經驗平台校園大使,演講 10 所高中職 - 曾於 IOH 分享個人講座 課程大綱 PART 1:PYTHON基礎教學 – 基礎講解+2道實戰上手PYTHON 1-1:Python下載、編譯器推薦、pip管理套件、虛擬環境 1-2:變數、運算元、運算子、資料型態及應用場景 1-3:for迴圈、while、if else判斷式、class簡介、def函式、經典套件介紹Pandas & numpy、Enumerate、Break/continue/pass、try/except 1-4:刷Leetcode簡單Two sum - 實戰演練1 1-5:手寫經典指標移動平均 – 實戰演練2 PART 2:資料來源與技術指標 – 熟悉爬蟲,資料來源無虞 2-1:台指資料分K轉換與計算技術指標 2-2:爬蟲介紹與基本SOP、Selenium應用場域 2-3:爬蟲實戰1: 證交所三大法人資訊 2-4:爬蟲實戰2: 期交所報價爬取 (Selenium) 2-5:爬蟲實戰3: 三大法人多空方口數與未平倉口數 2-6:即時資料 - 永豐API基本使用介紹(Shioaji) PART 3:盤中監測市場 – 計算專屬指標,LINE隨時提醒 3-1:Line Notify介紹 3-2:Windows排程呼叫程式自動運行 3-3:實戰1 – 三大法人買賣超統計資訊(股票) 3-4:實戰2 – 各大類股漲跌情況統計(股票) 3-5:實戰3 – 開盤前,昨日收盤指標有觸發訊號的提醒 PART 4:BACKTRADER回測策略+風險分析套件 – 高速回測策略,檢視完整報告 4-1:Backtrader介紹& Pyfolio示範 4-2:實戰回測1: 5ma & 60ma交叉策略 4-3:實戰回測2: 布林通道策略 4-4:實戰回測3: Momentum + 移動停利停損 4-5:實戰回測4: 以實戰1-3擇一為例,完整示範回測流程、演算最佳參數到pyfolio評估 PART 5:AI+期貨 – 玩玩模型應用在市場,體驗最新潮流 5-1:Deep Learning & Machine Learning & Reinforcement Learning簡介與資源推薦 5-2:實戰1: ML預測期貨漲跌 5-3:實戰2: DL預測期貨價格 5-4:實戰3: DL預測期貨漲跌 解鎖章節 200%:backtrader回測成果網頁可視化 500%:強化學習用於期貨交易學習範例 700%:python結合永豐API程式自動交易台指期範例 800%:回測配對交易範例
Mastertalks
打造動態報表!雲端 Python 爬蟲資料流
現在購課,立即贈送 【python 與爬蟲程式入門】112 分鐘影片 必須要用專屬連結 ▶▶▶ https://hahow.in/cr/data-pipeline 購買 並且【不要使用折扣碼】才會贈送喔! 完成後,填單索取影片:https://forms.gle/6gWHAHdNzpcUFP8y9 ● 你將有能力依據個人化的需求,獨立開發 Python 爬蟲程式,並利用雲端系統達成爬蟲長期監測,最後產出能持續自動更新資料的動態視覺化報表! ○ 不只是開發爬蟲,從資料爬取、處理、儲存到產出報表,你將學會利用 Google 雲端系統 (GCP) 建立完整的資料流,在雲端上將「資料到產品」會遭遇到的所有難題一次解決! ● 課程挑選出最常碰到的三種資料來源:Open Data(表格/CSV 格式)、HTML&CSS 網頁以及 Web API (JSON 格式),手把手教你面對不同的資料來源時該如何設計對應的爬蟲資料流,讓任何網路上的資料都能成為你的資料源!
Hahow好學校
Python 爬蟲入門特訓 ─ 資料抓取處理應用
課程對象主要針對非資訊科系人士,以及想把程式寫作能力奠定更扎實的開發者。課程內容除了爬蟲基礎語法逐步教學外,會使用豐富的實例不斷演練,並且培養如何觀察各類型的網站,思考如何從中突破抓取所需要的資料。 老師曾經幫許多非資訊專長的上班族上過 Python 基礎課程、爬蟲課程,知道初學者學習上常遇到的困難點,因此不斷調整教學方式,設計出一套循序漸進的學習歷程,能讓學習者更容易理解與運用。這門線上課程也會秉持著同樣的教學方法,內容不求太繁雜,而是紮穩基礎,並舉一反三,讓學習者從各種實例中磨練學習並觀察推導,才能活學活用。
電腦技能基金會