104學習精靈

全部 課程 貼文 教室 證照 影片
資料探勘相關的課程 (12)
從工作推薦課程
iPAS機器學習工程師考照班
AI即未來!各大產業離不開機器學習,人工智慧如火如荼發展,整個產業勢必向智慧化靠攏, AI人才需求也倍數增長!iPAS產業人才能力鑑定是經濟部為充裕產業升級所需人才, 整合產官學研所建立的鑑定體制。有專業能力認證,更容易獲得企業優先面試/聘用及加薪之機會。艾鍗學院授課講師皆取得iPAS認證,章章精彩、片刻不冷場,帶給學員最實戰的應試指南,打穩機器學習工程師的基本功! 學習目標 1. 帶你了解機器學習產業發展趨勢及應用方向 2. 養成資料特徵與資料預處理能力,並能運用探索式資料分析(EDA),洞悉數據關聯性。 3. 教你機器學習和深度學習的專業術語與觀念,並能了解其背後的意義及數學意義。 4. 漸進式熟悉機器學習演算法與模型建立流程,後續模型訓練成效之驗證。 5. 從提供之iPAS樣題詳細解析中,了解更多觀念與實作技巧 章節架構 初級 Part 1. 機器學習觀念打底 Section A:資料處理分析與特徵選擇 1. 人工智慧與機器學習簡介 2. 機器學習如何進行學習 3. 資料與特徵 4. 機器學習建立模型的流程 5. 探索式資料分析(EDA)與資料預處理方法 6. 如何挑選好的特徵? Feature Selection v.s. Feature Extraction Section B:監督式機器學習演算法 1. 迴歸模型: 線性迴歸▼ iPAS ML linear regression Ridge v.s. Lasso 線性迴歸 評估迴歸模型的性能指標 2. 分類模型: Logistic Regression 演算法 KNN 演算法 決策樹演算法 SVM 演算法與數學原理 評估分類模型的性能指標 3. Ensemble Method Random Forest隨機森林 Adaboost Section C:非監督式機器學習演算法 1. 降維: PCA 演算法▼ iPAS ML The Algorithm of PCA c 2. Clustering: K-means 演算法 Hierarchical Method 演算法 3. 強化學習 強化學習的架構 Q-learning 演算法 Section D:深度學習 1. 深度學習技術簡介 2. 類神經網路運算模型原理 3. 深度學習建立模型的流程 4. 深度學習框架TensorFlow/Keras 程式架構說明 5. 其他網路結構簡介:RNN/LSTM、CNN Part 2. Python實作機器學習 1. 資料處理工具: Numpy、Pandas▼ iPAS ML Pandas 2. 視覺化工具: Matplotlib▼ iPAS ML Matplotlib c 3. 機器學習工具:Scikit-learn 4. 迴歸模型實作 y=f(x) 的函式預測 價格預測模型 5. 鳶尾花花卉分類與探討▼ iPAS ML iris 使用Logistic Regression 使用KNN 使用Decision Tree▼ iPAS ML Decision Tree 使用SVM▼ iPAS ML SVM 使用Random Forest 使用Adaboost 6.PCA 降維使用Scikit-learn▼ iPAS ML PCA降維使用Scikit learn 7.K-means分群使用Scikit-learn▼ K means分群使用Scikit 8.Hierarchical方法分群使用Scikit-learn▼ iPAS ML Hierarchical Scikit learn 9.強化學習-找寶藏地圖實作解析▼ iPAS ML Reinforcement learning iPAS ML Q learning value function Part 3. iPAS機器學習工程師範例試題詳解
艾鍗學院
iPAS巨量資料分析考照班
AI如火如荼發展,各大產業對於巨量資料分析人才都存在龐大需求。iPAS產業人才能力鑑定是經濟部為充裕產業升級所需人才, 整合產官學研所建立的鑑定體制。有專業能力認證,更容易獲得企業優先面試/聘用及加薪之機會。艾鍗學院授課講師皆取得iPAS認證,章章精彩、片刻不冷場,帶給學員最實戰的應試指南,打穩巨量資料分析師的基本功! 學習目標 1. 熟悉Python程式語言與Python物件導向設計。 2. 熟悉Python原生的資料結構操作,如tuple, list, dict, set等。 3. 機器學習的概念(監督式學習、非監督式學習)。 4. 資料特徵與資料預處理方式。 5. 知道如何使用Scikit Learn 套件進行實作。 6. 了解迴歸與最小平方法。 7. 了解基本的機器學習分類演算法, 如決策樹、隨機森林等。 8. 了解機器學習分群演算法, 如K-means, 階層式分群法。 9. 熟悉Python常用的資料處理套件,如Pandas, Numpy, Matplotlib。 10. 從提供的iPAS 中級實作題解答中,了解更多實作技巧。 章節架構 初級 Part1.資料導向程式設計 • 1.Python實作基礎 o Python 簡介 o 變數與動態資料型別 o 運算式 o 序列資料結構- list, tuple, range o 非序列資料結構-set, dict,… o 流程控制 o 自訂函數 o 變數命名空間 o 例外處理 o 物件導向設計 o 模組與套件 o 資料匯入與匯出(txt,csv,JSON,pickle) o 附錄: Anaconda 安裝與使用 Part2.機器學習簡介與資料處理 • 1.人工智慧簡介 • 2.機器學習簡介(監督式學習、非監督式學習) • • 3.資料與特徵 • • 4.資料預處理使用Scikit-learn • • 5.其他 o Z-score 標準化 o 資料庫概念(含NoSQL) 中級 Part3.機器學習實務 • 1.Introduction to Machine learning & Terminology • 2.Linear Regression o Gradient Descent from scratch o Linear Regression from scratch o ridge vs lasso regression • 3.Machine learning using Scikit-learn • 4.Linear Regression using Scikit-learn • 5.Classification o Logistic Regression o KNN o Decision Tree • 6.Dimensionality reduction - PCA • 7.Ensemble Method • o Random Forest o Adaboost • 8.Clustering o K-means o Hierarchical Method • 9.Reinforcement Learning o Q-learning Algorithm & Implementation • • @ 進階資料處理 (Python常用資料處理套件) • o 資料矩陣運算-使用Numpy o 資料庫匯入-使用Pandas o 資料視覺化-繪圖與製表-使用Matplotlib Part4 iPAS巨量資料分析試題 • 1.中級巨量資料分析師能力觀念題 • 2.術科試題 - 文字資料處理 o 透過程式產生重複資料 o JSON 格式之載入與轉換 o 取出描述內容包含字串「Limited」之商品資料 o 字串處理技巧 o 將商品描述(describe)透過結巴斷詞並計算詞頻 排行 • 3.術科試題解析 - 集群與視覺化 o 讀取資料 o 次數分配表 o k-means 集群 o 分組計算 o 資料視覺化 • 4.術科試題解析 - 隨機森林迴歸預測模型 o 讀取資料 o 切分訓練集與測試集 o 模型配適 o 預測 o 評估 • 5.術科試題解析 - 隨機森林分類預測模型 o 讀取資料 o 切分訓練集與測試集 o 模型配適 o 預測 o 評估
艾鍗學院
成為AI工程師必學的深度學習與 PyTorch 實作
成為AI工程師必學的深度學習與 PyTorch 實作 完課後,你將學會 Multilayer Perceptron (MLP, 多層感知器):也稱為前饋神經網路,是深度學習中最基礎的模型,可用於處理結構化的資料,例如表格中的數值、類別等,並進行分類、回歸等任務。 Convolutional Neural Network (CNN,卷積神經網路):用於對影像或音訊等二維和一維資料進行分析和處理,能夠有效地提取出其特徵,並進行影像分類、目標檢測等任務。 Recurrent Neural Network (RNN,遞迴神經網路)Family:包含RNN、Long Short Term Memory Network (LSTM,長短期記憶網路):用於處理序列型資料,能夠有效地捕捉序列間的長期相依性,被廣泛應用於語音辨識、機器翻譯等自然語言處理領域。 Transformer:用於處理序列型的資料,透過學習來估計全部序列之間的的關聯性,能共有效的通盤考慮整段資料的特性,被廣泛用在自然語言領域,近年來也被導入影像相關AI模型。 Generative Adversarial Network (GAN,生成對抗網路):是一種生成模型,能夠透過兩個神經網路之間的對抗訓練,從噪聲中生成出與真實資料相似的新資料,用於影像生成、音訊生成等任務。 課程成果 4-5 影像切割方法介紹(U-NET) 在實務上最常拿來使用就是影像的前景背景切割,也就是如果要做去背的動作,可以靠大量資料模型訓練後,讓模型學習到哪些是主要要切割出來的物體。 5-4 Transformer 我們簡單操作NLP相關的範例,利用網路上別人的開源資料進行英中翻譯的Transformer (簡易版)的PytTorch模型建立和模型訓練。 5-5 實作:股價預測 我們將進行股價資料爬蟲 (直接利用yfinance模組),然後採用LSTM利用過去的股價進行未來股價的預測。除了股價預測之外,只要資料都是時序資料都也可以進行相同的程式操作,包含庫存預測或是失業率預測等。 課程介紹 什麼是 PyTorch? PyTorch是一個基於Torch函式上,針對Python所開發的機器學習庫,為深度學習的框架之一,主要應用於電腦視覺和自然語言處理。 PyTorch 的設計目標是提供一個簡單易用、靈活且高效的工具,深受在深度學習領域的工作者的喜愛。它最大的核心功能是提供自動微分,幫助開發人員可以更容易地定義和優化神經網絡模型。同時,PyTorch的動態計算圖表更貼近Python風格的編程,因此更易於開發和調試。你可以使用標準的Python語句進行調試,並且更容易理解和檢查中間結果。 另一個特點是會使用動態計算圖表。相較於其他框架 (TensorFlow),PyTorch的計算圖是在運行時就構建的,表示計算會在每一行程式碼都完成後執行,使得使用者可以更靈活地進行模型構建和調試。此外,PyTorch還支援多GPU平行加速,可以加快模型訓練的速度。 PyTorch與TensorFlow的差異 PyTorch和TensorFlow是當今兩個最受歡迎且廣泛使用的深度學習框架,它們有一些重要的差異: 社群生態系統:TensorFlow擁有更大的社群生態系統和更廣泛的應用案例支援。許多大型公司和研究機構使用TensorFlow進行深度學習研究和應用開發。然而,PyTorch近年來的快速發展也使其社群生態系統不斷擴大,並且在學術界和研究領域中獲得了廣泛的支持,並且在最新、State-of-the-art和開源的AI算法幾乎都以PyTorch撰寫。 開發和調試:由於PyTorch的動態圖和Python風格的編程,它通常被認為更容易於開發和調試。您可以使用標準的Python語句進行調試,並且更容易理解和檢查中間結果。 課程説明 本課程講師是擁有13年以上的AI產學經驗、並且任職上市公司人工智慧研發部副理的黃志勝老師,以業界需求的實務角度著眼,貼近初學者的心態著手,介紹完整的近代人工智慧,神經網路的模型學習技巧,例如參數初始和更新方式、梯度更新方式、損失函數等。以及網路架構的介紹,包含感知神經網路、卷積神經網路、和時序系列神經網路(RNN、LSTM、Transformer)等,並帶著學員學習PyTorch的操作,詳述近代人工智慧應用與深度學習的相關技術。 主要重點有: 深度學習與 PyTorch 基礎觀念:從深度學習的基礎觀念開始介紹,深度學習的演變以及使用 PyTorch 進行深度學習專案的開發。 類神經網路相關主題:探討損失函數、梯度下降法、參數影響等,並如何選擇優化器。 卷積神經網路(CNN):利用 PyTorch 建立 CNN 網路,學習建構和訓練模型,進行物件偵測及影像偵測等實作。並完成三項實作練習: CNN影像分類 (貓狗分類) YOLO物件偵測 (人臉偵測) U-NET影像切割 (PASCAL VOC) 時序神經網路:遞迴神經網路(RNN)、長短記憶模型(LSTM)、GRU 網路和 Transformer 自注意力機制,並實際應用於以下兩項實作練習: 股價預測 英中文翻譯 課程適合誰 1. 想成為 AI 工程師者 2. 想了解深度學習 (Deep Learning)與訓練模型者 3. 想學習 PyTorch 操作、神經網路者 課程特色 1. 課程搭配卷積神經網路(CNN)與時序神經網路範例實作 2. 內容含市面少有的 Transformer : 自注意力 (Self-Attention) 教學 3. 老師擁有 13年學術上和業界的經驗,課程所教授的知識都是在 業界實際使用到的內容 課程大綱 一、深度學習與PyTorch基礎觀念 深度學習的演變 為什麼要使用 PyTorch:PyTorch 如何協助深度學習專案的開發 PyTorch 數值型態與基本運算 ONNX簡介 Pytorch dataloader 二、類神經網路 感知機神經網路 常用的 Activation Function (激勵函數, ACT) 透過 Activation Function 做到特徵非線性轉換 三、神經網路怎麼學習 損失函數 梯度下降法 倒傳遞學習法 參數常規化 參數初始方式 優化器(Optimizer)的選擇 四、卷積神經網路(CNN) 卷積神經網路常用的原件,例如: 卷積(Convolution) 最大池化(Max pooling) 全連結層(Fully connection) 激勵函數(Activation function) Softmax函數...等等 CNN經典模型介紹 : Alexnet、VGG、GoogleNet、Inceptionv2-v4、ResNet、DenseNet、MobileNet等等。 如何利用Pytorch自行建立CNN網路,以ResNet為例。 物件偵測方法介紹(YOLO) 影像切割方法介紹(U-NET) 資料增強(Data Augumentation) 實作:使用預模型做遷移學習、訓練自己的深度學習模型 CNN影像分類 (貓狗分類) YOLO物件偵測(人臉偵測) U-NET影像切割(PASCAL Visual Object Classes(PASCAL VOC)) 五、時序神經網路 遞迴神經網路(RNN) 長短期記憶模型(LSTM) GRU網路 Transformer:自注意力(Self-Attention) 實作:股價預測 實作:中英文翻譯 解鎖 Generative Adversarial Network (GAN)
Mastertalks
人工智慧-Python與資料科學
這是一門有別於坊間的AI數位課程,不僅有清楚的觀念說明也有詳細的程式解說。教你Python程式並瞭解如何實際進行資料處理。 本課程以「程式打底」為目標,教授Python語言及以Numpy、Pandas、Matplotlib進行資料處理與分析。 學習目標 【Python與資料科學】 1. 能快速熟悉Python語言的核心與Python常用的資料結構 2. 學會運用資料科學常用套件-Numpy、pandas、matplotlib來處理、分析與圖表化資料 3. 機器學習的設計方法與術語-從迴歸(Regression)方程式認識機器學習的基本精神 4. 能不使用任何工具套件,以Python實作迴歸方程式 ※ 課程適用經濟部iPAS巨量資料分析師/機器學習工程師能力鑑定考試準備 章節架構 ►Python 簡介 ►變數與動態資料型別 ►運算式 ►序列資料結構- list, tuple, range ►流程控制 ►更多資料結構-set, frozenset, dict, byte, bytearray ►函數 ►變數命名空間 ►類別設計 ►例外處理 ►模組與套件 ►輸入輸出與檔案處理(txt,csv,JSON, pickle) ► 其他(https urlib、beautifulshop,…) ► 附錄: Anaconda Windows/Linux安裝與使用 ►conda 套件管理 ►conda 虛擬環境 ►ipython interpreter ►jupyter notebook ►資料矩陣運算使用Numpy ►資料匯入匯出使用Pandas ►繪圖與製表使用Matplotlib ►機器學習概念 ►最佳化演算法: Gradient Descent ►手刻Gradient Descent演算法 ►手刻線性迴歸 ►手刻線性迴歸作(矩陣版)
艾鍗學院